

NATIONAL UNIVERSITY OF SCIENCE

AND TECHNOLOGY

POLITEHNICA BUCHAREST

Doctoral School of Electronics, Telecommunications

and Information Technology

Decision No. 93 from 05-10-2023

Ph.D. THESIS

SUMMARY

Cosmin Andrei CONȚU

MANAGEMENTUL RESURSELOR ÎN SOLUȚII DE

VIRTUALIZARE PENTRU REȚELE ȘI SERVICII

RESOURCE MANAGEMENT IN VIRTUALIZATION

SOLUTIONS FOR NETWORKS AND SERVICES

THESIS COMMITTEE

Prof. Dr. Ing. Ion MARGHESCU

NUST Politehnica of Bucharest
President

Prof. Dr. Ing. Eugen BORCOCI

NUST Politehnica of Bucharest
PhD Supervisor

Prof. Dr. Ing. Virgil DOBROTĂ

Technical Univ. of Cluj-Napoca
Referee

Prof. Dr. Ing. Sorin ZOICAN

NUST Politehnica of Bucharest
Referee

Prof. Dr. Ing. Florin ALEXA

Politehnica Univ. of Timișoara
Referee

BUCHAREST 2023

Content

1. Introduction ..………………………………………………………................. 4

1.1. Presentation of the field of the doctoral thesis …………………................ 5

1.2. Scope of the doctoral thesis ……………………………………................. 5

1.3. Content of the doctoral thesis ..…………………………………................ 6

2. Using ML in Network Slicing ….…...……………………………................... 8

2.1. Concepts and tools …...………………………………………................... 8

2.2. Libraries and functions ………………………………………................... 9

2.2.1. Open source ML libraries ……...……………….....…...................... 9

2.2.2. Loss and optimization functions .………………………................... 10

2.3. Optimization functions comparison experiment …….….……................... 10

 2.4. Machine learning in network slicing …………………………................... 11

3. SONATA Framework ……………………………………………................... 12

3.1. Architecture ……..……………………………………………................... 12

3.2. ETSI NFV model comparison …….…………………………................... 13

3.3. SONATA emulator experiments ……….……………………................... 14

4. Open Source MANO Framework …...…..………………………................... 15

4.1. Architecture …..…………………...…………………………................... 15

4.1.1. Functional components ...………………………………................... 16

4.2. SONATA parallel …....………………………………………................... 16

4.3. Open source NFV MANO systems performance comparison ………....... 17

4.4. Use cases ………..……………………………………………................... 17

4.5. Optimal alarm threshold detection using machine learning ………........... 18

4.5.1. Alarm generation ………………………………………................... 18

4.5.2. Predictor component ...………………………….....…...................... 19

4.6. Implementations ...……………………………………………................... 20

5. The automation platform………………………………………................... 21

5.1. Architecture ..…....……………………………………………................... 21

5.2. Graphic interface ..……………………………………………................... 22

5.3. Experiments …….……………………………………………................... 23

6. Conclusions ..….………………………………………………….................... 24

6.1. Obtained results ..…………………………………………….................... 24

6.2. Original contributions .……………………………………….................... 25

6.3. List of original publications ..………………………………...................... 26

6.3.1. List of research projects ……..………………….....…...................... 28

6.4. Perspectives for further developments ……………………........................ 29

Bibliography ..……………………………………………………........................ 30

Chapter 1

Introduction

In the telecommunications sector, there is a huge demand for mobile broadband,

largely due to the need for high-quality video content delivery. 5G networks are

addressing this problem while trying to support the development of several sectors by

providing the infrastructure for the development and use of applications that require

very low latency and high network reliability. In order to meet all these services and

requirements, 5G networks need high flexibility at the architectural level [1].

Network Functions Virtualization (NFV) is an emerging architecture concept.

It aims to address some of the challenges and limitations that exist in the

telecommunication industry, such as the large number of proprietary hardware

machines dedicated to specific services, high Capital Expenditure (CAPEX) and

Operational Expenditure (OPEX) costs, high power consumption and storage space

issues of hardware machines as well as lack of flexibility or interoperability [2][3].

Nowadays, NFV is also a supporting technology in Cloud or Edge Computing.

NFV decouples hardware machines from the network functions running on them,

using generic hardware and running network functions through virtual machines

installed on these generic machines. Based on virtualization technologies, NFV

enables much faster development and deployment of services containing network

functions that can be virtualized (compared to services composed of physical network

functions). Virtualised Network Functions (VNFs) can be defined, instantiated,

deployed or migrated using the same infrastructure. They can be created, modified or

deleted without the need for a physical presence at the location of the hardware

machines running these functions. Another advantage is the reduction of CAPEX and

OPEX costs due to the growing IT industry enabling software development. It can

also lead to a decrease in power consumption through a virtual machine management

and migration plan.

Software Defined Networking (SDN) is a complementary technology to NFV.

The concept of SDN is to separate the control plane from the data/user plane. This

concept allows high flexibility, programmability and abstraction of the network,

improving management and control functions. Although SDN and NFV are two

completely independent technologies, they can be used together to create powerful

and flexible telecommunications systems. From a general point of view, these two

technologies can be considered as orthogonal, as SDN separates the control plane

from the data plane and NFV can be used in both the data and control planes to

implement various virtual network functions.

The 5G Network Slicing concept is based on virtualization and

programmability, allowing for modularity in the provisioning of network resources,

tailored to various system requirements in terms of bandwidth, latency, mobility, etc.

[4-8]. From a general perspective, a Network Slice (NSL) is a managed logical group

of subsets of resources, physical and/or virtualized network functions, architecturally

placed in a Data Plane (DPl), a Control Plane (CPl) and a Management Plane (MPl).

The slice is programmable and has the ability to expose its capabilities to users. NFV

[9-11] and SDN technologies can be used together [12] to manage and control the

sliced 5G environment in a flexible and programmable way.

In 5G systems, an operator can physically split network traffic, split a

network, or split the resources of several networks combined. This flexibility allows

operators to select the desired features that are required by a customer, such as traffic

volume or connection density. As defined by the 3rd generation partnership project

(3GPP) [13], there are three general types of network slices, each corresponding to a

5G use case. Enhanced mobile broadband (eMBB) slices, which can offer high data

rates and moderate delay. Ultra-reliable low latency communications (URLLC) slices

that provide very reliable transmissions with extremely low delay. Massive machine-

type communications (mMTC) slices supporting high-density Internet of Things (IoT)

connections.

1.1 Presentation of the field of the doctoral thesis

Considering the massive growth of the telecom industry and the deployment of 5G

networks in recent years, paradigms such as SDN and NFV have been exploited,

offering viable solutions to current industry problems. Using these technologies, the

concept of network slicing can bring great benefits such as modularity in provisioning

network resources and allocating subsets of them into logical groups, tailored to

customer requirements in terms of latency, bandwidth, etc.

A very important phase in the virtualization of a network is its orchestration

and management. For this reason, the SONATA and Open Source MANO

frameworks have been studied in this paper and subsequently used in experiments.

Other technologies presented in this paper are web platform development

(React library), REST API communication standard as well as machine learning

algorithms.

1.2 Scope of the doctoral thesis

This thesis aims to present the NFV and Network Slicing paradigms and their various

use cases. The study of two NFV frameworks such as SONATA and OSM

complements the study of these paradigms. For a better understanding of how these

frameworks work, various experiments have been conducted.

After analyzing the results obtained from these experiments, one of the two

frameworks was chosen to be integrated into a stand-alone system that would allow

intelligent configuration of new network slices using Machine Learning (ML)

algorithms. The autonomous system was integrated into a platform through which a

new service chain was built, allowing experiments to be carried out to validate this

implementation. This autonomous system and the platform that includes it are original

contributions of the author, both at the architectural level and at the implementation

and testing level.

Using this automated platform, deploying a network slice through the Open

Source MANO - Virtual Infrastructure Manager service chain becomes much faster

and easier. Adding the intelligent configuration block optimizes network slices both in

terms of deployment and installation on the right infrastructure, as well as adaptively

changing alarm and scalability thresholds..

The solution proposed in this paper aims to improve the current network slice

management workflow through automated mechanisms that can optimally allocate

resources and adapt alarm and scaling thresholds to optimize network slice operation.

1.3 Content of the doctoral thesis

The work is divided into six chapters. The first chapter is an introduction to the field

of the PhD thesis and the last chapter presents the conclusions of this work. The

remaining chapters are presented below.

 Chapter 2 contains an extensive overview of machine learning concepts and

tools used in specific network slice cases. The concepts presented will form the basis

of the following chapters. A comparison of optimization functions using an

experiment as well as a review of other projects studying the use of machine learning

in network slicing is also performed.

Chapter 3 presents the SONATA framework, starting with a review of other

similar projects and continuing with its detailed architecture and a comparison with

the ETSI NFV model. Furthermore, a series of experiments using the SONATA

emulator are presented.

Chapter 4 covers the Open Source MANO framework starting with its

architecture. A parallel between this framework and SONATA is reviewed to

highlight the more complex architecture of Open Source MANO. A performance

analysis of Open Source platforms is conducted and different use cases and projects

using OSM are presented. Next, an architectural enhancement to the monitoring

module is proposed by detecting an optimal alarm threshold using ML algorithms.

Lastly, a series of implementations divided into various scenarios are presented.

Chapter 5 is dedicated to the Automation Platform. This is a new component

added to an existing service chain (Open Source MANO and a virtual infrastructure

manager) to improve the process of deploying and managing network slices. The

architecture of this platform and its role in the new service chain is presented, as well

as its graphical user interface along with its building blocks. A series of experiments

covering various scenarios are presented in the last part of the chapter.

Chapter 6 contains the conclusions of this work, presenting the results of the

multiple experiments performed, the author's original contributions and their role in

improving existing systems. The author's list of papers and projects and the prospects

for further development of his contributions are also presented.

Chapter 2

Using ML in Network Slicing

The objective of this chapter is to present and understand machine learning

technologies and their applicability to network slicing. The conducted experiment

facilitated the choice of an optimization function and the creation of a prediction

model that was used in the following chapters.

ML is a branch of Artificial Intelligence (AI) that allows machines to learn

and improve their performance over time using evolving algorithms and input data

(training data, real-life data). While in traditional programming, the result will be

obtained based on input data and already defined algorithm(s), ML algorithms are an

adaptive process that is able to generate a result by learning from previous experience.

2.1 Concepts and tools

ML techniques are used today in a wide range of areas. A typical example of an ML

application is image recognition, which is able to determine the type of an image

based on a set of training data and can even recognize specific patterns such as objects

or people. Prediction is another common use case for ML and is applied in various

domains, from predicting real estate prices to predicting traffic patterns. Product

recommendations, speech recognition, malware detection as well as natural language

processing are other well-known use cases [14]. ML algorithms and techniques are

increasingly used in network and service management and control operations

(resource reservation and allocation, traffic forecasting, mobility management, etc.).

 A classification of ML methods might be:

Supervised learning (SML) - these methods predict one or more dependent

variables based on (initially) labeled data.

Semi-supervised learning (SSML) represents cases where not all data is

labelled.

Unsupervised learning (UML) - the machine searches for structure in

(unlabeled) datasets.

Reinforcement learning (RL) is the fourth major learning method in ML,

alongside supervised, unsupervised and semi-supervised learning. However, the RL

model does not require large amounts of data to train. It learns structures by

rewarding desirable behaviours and punishing bad ones.

Deep learning (DL) - uses a series of layers of non-linear processing units to

extract and transform features. DL models can be supervised, semi-supervised or

unsupervised (or a combination of all three). DL is based on neural networks (NN),

which mimic the way the human brain works [15].

RL has difficulties in cases with large state spaces because it has to go through

each state and obtain a value function or pattern for each state-action pair in a direct

and explicit way. Proposals have been developed to sample only parts of the states

and then apply NN to train a sufficiently accurate function or model. The result is

Deep Reinforcement Learning (DRL), which exposes sufficient performance stability.

In short, DRL is a combination of RL and DL, where RL defines the goal and DL

provides the mechanism.

2.2 Libraries and functions

ML is a branch of Artificial Intelligence (AI) that allows machines to learn

and improve their performance over time using evolving algorithms and input data

(training data, real-life data). While in traditional programming, the result will be

obtained based on input data and already defined algorithm(s), ML algorithms are an

adaptive process that is able to generate a result by learning from previous experience.

2.2.1 Open source ML libraries

There are many open source ML libraries available that are currently used in

application development. These libraries are capable of providing predefined

templates and extensive customization possibilities.

 Scikit-learn [16] is one of the most popular and robust ML libraries offering a

wide range of tools and templates for ML development in Python. PyTorch [17] is an

open source framework that is frequently used in deep learning development, such as

image recognition or language processing. Natural Language Toolkit (NLTK) [18] is

an important platform for developing Python applications for natural language

processing. It provides a wide range of resources for speech recognition, encoding,

classification, etc. TensorFlow [19] is an open source ML library developed by

Google, focused on deep learning and large-scale machine learning projects.

TensorFlow provides a wide range of ML/DL models and algorithms implemented in

different programming languages, such as Python or Javascript.

2.2.2 Loss and optimization functions

In order to start training a model, it must first be created by assembling one or more

layers into a model. After its creation and assembly as a sequential model, the model

must be compiled. In the compilation stage, the model is given two functions: a loss

function that is responsible for measuring the difference between the predictions and

the expected outcome, and an optimization function that aims to reduce the loss by

adjusting the internal values until the most accurate form possible for the model is

obtained. Both functions are called during the training stage to calculate the loss for

each stage and to improve it.

 While Mean Squared Error [20] is the most widely used loss function, there

are several optimization functions that can be used.

 The adaptive gradient algorithm (Adagrad) [21] is a small-batch gradient

descent optimization method that adapts the learning rate by incorporating knowledge

from prior experience. Adaptive Moment Estimation (Adam) [22] is a gradient

descent optimization algorithm that uses the moment algorithm to speed up the

gradient descent algorithm by using exponentially weighted averaging of the gradients

and the adaptive root mean square propagation (RMSProp) learning algorithm that

uses exponential moving average. RMSProp [23] works in the same way as

Momentum by increasing the learning rate, using larger steps for directions that

converge faster. The difference between the two optimizers lies in the way gradients

are computed.

2.3 Optimization functions comparison experiment

In order to compare the optimization functions, the result of a short experiment

performed in [24] was considered. Using a small data set with x and y values that can

be described by linear equation 1.1:

𝑦 = 2𝑥 + 40 (1.1)

 Using an ML algorithm, the same equation should be found between the x and

y values. The x values will represent the input data for the ML model, while the y

values will be the labels or outcomes that the model should predict. After preparing

the data (and splitting it into training and test data), the model will be created with a

single layer and a single neuron (since a simple linear equation has to be solved). The

model will be assembled and compiled with a loss function and an optimization

function. In order to be able to compare the optimization functions, the model will be

trained with the same loss function, the same training data and the same number of

epochs, but with a different optimization function each time. As a final step, the

accuracy of the model will be measured using a performance parameter (Figure 2.1).

Figure 2.1 Comparison results of optimization functions

 The results [25] indicate that the Adam optimization function had the best

accuracy (0.9981), followed by RMSProps (0.9975) and AdamW (0.9963). Slightly

less accurate were Adamax (0.9317) and Adagrad (0.8986). Based on these results

and given that, among the optimization functions with a computed accuracy of over

99%, Adam has the lowest computation time, the Adam optimizer was chosen for

further use in this paper.

2.4 Machine learning in network slicing

There are a lot of existing studies and implementations of machine learning

techniques in network slicing. The studies cover several aspects of how to apply ML

algorithms in network slicing use cases, such as predicting potential threats, resource

allocation and traffic forecasting.

Chapter 3

SONATA Framework

In this chapter, the ability of the SONATA framework to orchestrate and manage

virtual network functions in an ETSI-aligned NFV environment was studied.

Performing the experiments in this chapter provided an important starting point for

understanding the life cycle of a network service as well as the communication

between an orchestrator and a virtual network manager.

The EU H2020 project SONATA: Service Programming and Orchestration for

Virtualized Software Networks [26] aims to develop an NFV framework that provides

external (third-party) developers with a programming model and a set of tools for

developing virtualized services integrated with an orchestration system. SONATA

offers the possibility for software developers to achieve a low time-to-market of a

Network Service (NS), to optimize and reduce deployment costs and to shorten the

integration time of software networks in the telecom industry.

From SONATA's perspective, OpenStack is a complementary platform.

SONATA developers need access to a working instance of OpenStack to use its

virtual infrastructure manager functionality to run services from the service platform.

Another option for SONATA service developers, is to use the SONATA

emulator to develop and test various network services chained in different scenarios.

The SONATA emulator provides OpenStack-like interfaces to allow an orchestrator

(SONATA, Open Source MANO) to control the emulated virtual infrastructure

manager.

3.1 Architecture

The overall architecture of the SONATA framework (Figure 3.1), which is built upon

the NFV MANO architecture model provided by ETSI, consists of the following

components [27]:

- - Service Platform (SP)

- - Software Development Kit (SDK)

- - Catalogues

The Service Platform (Figure 3.2) receives the service packages created

through the SDK and is responsible for placing, deploying, provisioning, scaling and

managing services on existing cloud infrastructures. The component responsible for

processing incoming and outgoing requests is the gatekeeper module. The service

platform is also responsible for providing direct feedback to the software development

set on deployed services, e.g. monitoring data of a service or its components. It has

also been designed with the possibility of full customization in mind, thus giving both

flexibility and control to operators and developers.

A more detailed view of the architecture of the SONATA framework and how

the components communicate with each other can be seen in Figure 3.4.

Figure 3.4 Detailed architecture of the SONATA framework [28].

3.2 ETSI NFV model comparison

The MANO framework is the core element of the platform and provides management

for the entire lifecycle of complex network services. It has the same building blocks

as the ETSI-MANO block (NFV orchestrator and VNF manager).

Both in SONATA and in the ETSI model, the virtual infrastructure manager

controls and manages virtualized compute, storage and network resources in the

operator infrastructure domain. A virtual infrastructure manager can control one or

more types of resources within the NFV infrastructure.

Also, compared to the ETSI-MANO model, in SONATA there is also the

gatekeeper component which is responsible for validating the network services

uploaded to the platform as packets, by mediating between development and

operational actions [29].

Therefore, the service platform follows the ETSI NFV model but, at the same

time, adds new proprietary extensions that make it easier to support multiple clients

by slicing resources that can be allocated exclusively to a specific client.

Compared to the ETSI model, SONATA has added the SDK as a very

important component of the proposed architecture. This set supports third-party

developers who want to develop complex services containing multiple virtualized

network functions, with a variety of software tools but also with support for

deployment and management of network services created on different SONATA

service platforms..

3.3 SONATA emulator experiments

These experiments were a first step in understanding how an orchestrator works and

the lifecycle of a virtual network function. Starting from simple topologies such as

communication between two client machines, to topologies with chained functions

(client, router, firewall, etc.), these experiments have provided a good understanding

of virtualization and management of network functions in an NFV environment.

These contributions formed the basis for further experiments in this work.

The topologies used in these experiments are represented as emulated

networks using Docker containers [30] as instances on which to run virtual network

functions.

Experiments performed:

• Topology with simple client virtual machines: The objective of this

experiment is to create two client virtual machines and test the

communication between them.

• Topology with HTTP server: The objective of this experiment is to

create an HTTP server virtual machine and a client virtual machine to test

the functionality of the HTTP virtual server.

• Topology with virtual firewall: The objective of this experiment is to

create a firewall virtual machine and two client virtual machines to test the

functionality of the firewall virtual machine, which will allow or block a

certain type of traffic between the two client machines.

• Topology with virtual routers: The objective of this experiment is to

create a network of router virtual machines that will route traffic between

three client virtual machines in three different networks.

• Topology with chained virtualized network functions: The objective of

this experiment is to create a topology that instantiates a chaining of

various virtualized network functions. The virtual machines used in this

topology will be client, router, firewall, proxy server and HTTP server.

Chapter 4

Open Source MANO Framework

In this chapter, the architecture of the OSM framework compared to the SONATA

framework and its performance was studied. For a better understanding of how the

OSM works, a series of implementations with various scenarios were performed. A

proposal for improving the architecture using ML algorithms to detect an optimal

alarm threshold was also presented.

Open Source MANO (OSM) is an ETSI-supported project that aims to

develop a management and orchestration software package aligned with the NFV

architecture presented by ETSI. OSM is based on a multi-layer model, where each

layer contains a service composed of the services of the lower layers. Using this

approach, OSM aims to provide better service integration with minimal effort. This is

achieved by using an information model (Figure 4.1) based on the NFV model

provided by ETSI, which is able to model and automate the life cycle of network

functions..

4.1 Architecture

From an architectural point of view [31], OSM consists of several modules. Each of

these has specific roles and is decoupled from each other (Figure 4.2). NBI is an

important module that consumes information from other modules. NBI provides

communication via Representational State Transfer (REST) APIs, which are

consumed by various clients, such as the CLI client. The CLI is an OSM client

provided as part of the installation. In addition, there is also a GUI client that allows

direct use of OSM. Other types of clients that can interact with the NBI are

Operations and Business Support Systems (OSS/BSS). The VIM client will be

responsible for managing the resources (compute, storage and network) of the NFV

infrastructure.

.

4.1.1 Functional components

The main components of the system are the LCM, the VNF Configuration and

Abstraction (VCA) module and the Resource Orchestrator (RO). When a new

instantiation request is made, the NBI records an entry in the MongoDB database

stating that a new instance is to be created and passes control to the LCM, which is

responsible for the instantiation operations and provides end-to-end orchestration.

First, if deployed on an infrastructure manager, the LCM will interact with that VIM

to create networks and provide connectivity between virtual machines in that VIM. It

also interacts with SDN controllers which are, like the VIM, external components that

the OSM interacts with via the RO module, and deploys those virtual machines.

 After installing the OSM software on a local or remote server, a connection

must be established with a VIM.

Figure 4.2 OSM Architecture. [31].

4.2 SONATA parallel

This section presents a selective overview of related work on the development and

orchestration of services in virtualized networks and their relationship to the OSM

architecture. It also presents the SONATA framework which is part of the OSM

framework.

SONATA is in a direct relationship with OSM thanks to the integration of the

SONATA emulator from the SDK module into OSM DevOps, which was part of the

third release of OSM. This emulator provides easier integration with MANO stacks

thanks to its APIs, which resemble the APIs provided by Openstack [32].

The SP component of SONATA can be seen as an alternative to OSM. It

contains elements such as a gateway module, a MANO framework, a network slice

manager, infrastructure abstraction, catalogues, repositories, a policy manager, a

Service Level Agreement (SLA) manager, a monitoring manager and a portal.

SONATA is rather an OSM collaborator than a competitor, with various

components that are already compatible or easily integrated with the OSM

framework. SONATA is also mentioned in various scenarios in published OSM

papers. One type of scenario is where the operator wants to cooperate with another

operator to provide network service. For example, it may transfer the provision of

infrastructure or a specialized VNF to another operator. The implication is that OSM

needs an architecture that allows the orchestration of orchestrators, and the SONATA

project contributes to this through its MANO framework [33].

4.3 Open source NFV MANO systems performance

comparison

Open source MANO projects such as Open Network Automation Platform (ONAP)

[34], OSM, Open Baton [35], Cloudify [36], OPNFV [37], are in various stages of

constant development. Among these more prominent projects are Open Network

Automation Platform (ONAP) and Open Source MANO (OSM), which have gained a

lot of attention from the operator community, mainly due to the patronage of some of

the large operators behind their development. For example, ONAP, which is being

developed under the Linux Foundation umbrella, is mainly supported by AT&T,

while OSM is led by Telefonica and is being developed by ETSI's recently established

Open Source Group (OSG)..

 Both ONAP and OSM are in various stages of deployment, but are far from

complete or stable. Both aim to provide an integrated NFV MANO framework, but

follow very different directions in terms of architecture and implementation. Due to

their relatively recent development, there is very little information and experience

available on the functional and operational capabilities of these platforms and the

level of technological readiness. In addition, benchmarking the performance of

MANO systems is itself a challenge. This is because, unlike other traditional network

entities, which have well-defined Key Performance Indicators (KPIs) to assess

performance, there are no established and well-defined KPIs against which the

performance of a MANO system can be assessed..

4.4 Use cases

The OSM community brings together a lot of research projects implementing NFV

orchestration using the OSM stack. Most of these projects are 5G oriented and use

Openstack as VIM.

The 5GCity project [38] is building a platform that enables the use of a city's

information and communication technology infrastructure in cloud-to-edge

environments. 5GTango [39] is a 5GPPP project that provides flexible

programmability of a 5G network with several components such as an NFV-oriented

SDK, a VNF/NS storage platform with validation and verification mechanisms, and a

modular service platform. The Metro-Haul project aims to design metro networks

(agile, programmable and low power and cost) that should be 5G-enabled, including

the design of fully optical metro nodes, including storage and compute capabilities

[40]. The MATILDA project implements a 5G E2E service operational framework,

focusing on the lifecycle of 5G-ready applications and 5G network services (design,

development and orchestration) on both virtual and physical infrastructure using a

unified programmability model [41].

4.5 Optimal alarm threshold detection using

machine learning

The monitoring component (Figure 4.4) is responsible for collecting Virtual

Deployment Unit (VDU) metrics provided by VIM, VNF-specific metrics via Juju

charms and infrastructure metrics. It also takes care of storing the values of these

metrics in the TSDB in Prometheus and manages and evaluates alarms. The MON

module contains three modules: a server, a collector and an evaluator [42].

The POL module (Figure 4.11) has been designed for the autoscaling process

and handles listening or configuring alarms, sending scaling messages and calling

webhooks when alarm policies are met. [42].

The MON evaluator will assess the specific measurement thresholds and then

POL will take the necessary actions, such as self-calibration. Whenever an alarm is

triggered, MON will generate a notification and send it via the Kafka bus so that other

components, such as POL, can consume that message.

4.5.1 Alarm generation

The alarm descriptor is also part of a VNF descriptor and specifies which metrics

should be monitored, which metrics should already be defined in the monitoring list,

the thresholds to be monitored and the webhook method to be invoked..

 The current architecture allows OSM users to choose the alarm thresholds

themselves, without any information or knowledge of what the appropriate threshold

value should be. This should not be a problem for experienced users, but for new

users or new use cases, this could cause some difficulties in choosing an appropriate

alarm threshold.

In order to overcome this shortcoming, an improvement of the architecture has

been proposed in this paper. Specifically, a fourth component called Predictor (shown

in Figure 4.13) is introduced in the monitoring module, which applies a machine

learning algorithm to predict an appropriate alarm threshold based on existing data

from the common database (MongoDB).

Figure 4.13 Process proposal with integrated Predictor component.

4.5.2 Predictor component

 The Predictor component will be responsible for generating alarm threshold

suggestions and predicting the best threshold value for specific use cases.

 This new component will contain four main processes:

• get_alarms() which will query the common database and retrieve all stored

alarms.

• train() which will be a background process scheduled to train the

prediction model at specific time intervals.

• predict_threshold() is the process that will call the model prediction

function to get the predicted value.

• write_prediction() is the final process that is responsible for writing the

predicted threshold to the common database.

The Predictor component will listen on the Kafka bus for the new alarm creation

request (topic: alarm_request; key: create_alarm_request) and, whenever this message

is read, will trigger the start of the predict_threshold() process.

Since the predictor adds a predicted threshold value to the newly created alarm record,

some modifications to the common database model are required. The alarm template

will contain an additional field named "predicted_threshold" of type float. This

change is also reflected in the message bus schema where the alarm structure is

involved. In this way, an improved alarm threshold can be set automatically,

independent of the OSM user's previous experience, improving other OSM processes

such as auto-healing and ensuring better reliability.

4.6 Implementations

When creating new NSs containing custom VNFs, certain steps need to be followed to

get a proper and functional network service ready for deployment. A good practice

when creating new network services and virtual network functions is to create

diagrams for both before starting to create their associated descriptor.

 A series of implementations have been presented covering the following

scenarios:

- NS with a single VNF

- NS with multiple VNFs and VDUs

- NS with Day0 configuration

- Network slice

Chapter 5

The automation platform

In this chapter, an automation platform has been presented to improve and simplify

the process of deploying network slices through OSM. Its architecture, graphical

interface and operating mode were reviewed as well as experiments covering various

scenarios, highlighting the platform's functionalities.

As web applications have evolved from simple web pages to highly complex

systems, libraries and frameworks have been improved to provide web developers

with the best possible solutions. Modern web applications typically place logic on the

client side instead of the server and dynamically retrieve data from a server API [43].

 React este o bibliotecă JavaScript cu sursă deschisă dezvoltată de către

Facebook și utilizată pentru proiectarea de interfețe pentru utilizator [44]. Biblioteca a

fost publicată în 2013 și astăzi se numără printre cele mai populare instrumente

utilizate pentru dezvoltarea web de front-end.

5.1 Architecture

OSM offers the ability to create network slices by using their software package which

requires a VIM to create the necessary virtual machines. Communication between

OSM and the VIM is achieved by sending messages via Hypertext Transfer Protocol

(HTTP) to the VIM's APIs. In terms of the process of creating network slices using

OSM, there are three different ways:

• UI,

• CLI commands,

• OSM NBI API.

Figure 5.1 Automation platform workflow.

The automation platform is a web application developed with the ReactJS

library, which uses HTTP calls to communicate with OSM and Openstack. Its

interface is styled using the Material UI library.

 The architecture (Figure 5.2) of this web application contains several

components and services. Each component represents the graphical implementation of

each page displayed in the user interface. The services have the following roles:

• Authentication: initiates initial communication with both OSM and Openstack

to obtain access tokens that will be used by the other two services when they

request different information.

• OSM service: handles all requests to the OSM NBI to retrieve all necessary

data.

• Openstack service: handles all requests to Openstack API, which will forward

the requested data such as available image list etc..

5.2 Graphic interface

In the following, the use and operation of the automation platform for different

scenarios is presented. This interface provides the user with a number of actions such

as: creating a new network slice, displaying network slice instances, displaying

network slice templates or displaying available VIMs.

Figure 5.3 Automation Platform New Slice Page.

5.3 Experiments

In order to achieve automatic network slice deployment, it is necessary to configure

several parameters (processing, storage, memory, image, etc.) for each VNF and for

each NS contained in this slice. This is an important step to develop a platform

capable of automating and simplifying the process of deploying a network slice

through an Open Source MANO (OSM) system [45].

A network slice can also be created from a generic use case. Each network

service in the slice will be preconfigured using cloud-init scripts [46] on the

instantiated machines. Instantiation will take place on a specific VIM, suited for the

respective network slice type.

A new feature has been integrated into the automation platform to provide

better resource allocation. The Resource Prediction (RP) component is able to

optimize a network slice by providing predicted values for certain parameters such as

CPU, memory, storage. The model used was the one presented in Section 2.3, with a

single neuron dense layer that was compiled with a mean-square error loss function

and the Adam optimizer with a learning rate of 0.1, the model was trained for 1000

epochs. The dataset was built using previous slice data previously implemented

through the automation platform. Even though the dataset size is not very large, each

new network slice implementation will add new data to the dataset, improving it. The

dataset headers are Slice_Type, Use_Case, NS_Name, VNF_Name, vCPU, Memory

and Storage. Currently, training is initiated manually, but a scheduled training

function will be added as a next step.

 Three different experiments were conducted to test different functionalities of

the platform:

- Predefined network slice for high-definition video streaming: the slice

was created from a use case, so for VNFs, the useful content will also

contain the cloud-init script that will install the necessary media server in

the case of ultra HD streaming.

- Dedicated network slice for high performance computing: a dedicated

network slice to support parallel simulations for large-scale problems at

scale and speed, providing high performance computing.

- eMBB network slice with ML-optimized parameters: to test the RP

component, the general eMBB network slice was chosen as a scenario

because the current dataset contains mostly eMBB slice implementation

data, and the model should produce more accurate values.

Chapter 6

Conclusions

In this thesis, NFV and Network Slicing paradigms and their various use cases were

studied. This study continued by using and evaluating two MANO frameworks with

which various experiments were carried out. Following their evaluation, the OSM

framework was chosen to continue the study and integrate it into a new network

slicing automation platform.

 The advantages of ML techniques and their usability in network slicing

scenarios were also presented. On this basis, an architectural contribution to the OSM

monitoring module was proposed, which will increase its efficiency and flexibility.

The proposed new sub-module will be involved in the alarm workflow, generating an

alarm threshold value recommendation for each parameter for which an alarm is

configured. The recommended alarm threshold value is generated by using a

prediction algorithm ML.

The same type of algorithm is used in a resource prediction block that is

implemented and tested in an automation platform. With this new block, whenever a

user starts the process of creating a new network slice through the automation

platform, for each slice type or use case, the recommended values will be displayed as

input fields, allowing the user to configure better resource values based on previous

slice deployment data.

Using this automated platform, deploying a network slice through the MANO

- VIM open source service chain becomes much faster and easier. Adding the

resource prediction block optimizes network slices both at the deployment and

installation level on the right infrastructure, as well as adaptively changing alarm and

scalability thresholds. Thanks to the platform's ability to retrieve data about

instantiated slices and services from OSM and Openstack, service operators will have

a better view of these slices and services before slice deployment.

The solutions proposed in this paper aim to improve the current network slice

management workflow through automated mechanisms that can optimally allocate

resources and adapt alarm and scaling thresholds to optimize network slice operation.

6.1 Obtained results

The first chapter is an introduction to the scope of the thesis and its purpose and

content.

 Chapter 2 contains a broad overview of machine learning concepts and tools

used in specific network slicing cases, a comparison of optimization functions using

an experiment as well as a review of other projects studying the use of machine

learning in network slicing. This chapter has led to a better understanding of machine

learning technologies and their applicability to network slicing. The experimental

results facilitated the choice of an optimization function and the development of a

prediction model that was used in the following chapters.

Chapter 3 presents the SONATA framework, starting with a review of other

similar projects and continuing with its detailed architecture and a comparison with

the ETSI NFV model. Furthermore, a series of experiments using the SONATA

emulator are presented. The results of this chapter were the understanding of the life

cycle of a network service as well as the communication between an orchestrator and

a virtual network manager through the experiments, representing an important starting

point for understanding how a MANO framework works..

Chapter 4 discusses the Open Source MANO framework starting with its

architecture. A parallel between this framework and SONATA is reviewed to

highlight the more complex architecture of Open Source MANO. An analysis of the

performance of Open Source platforms is performed and different use cases and

projects using OSM are presented. An improvement of the architecture at the

monitoring module level by detecting an optimal alarm threshold using ML

algorithms has been proposed and, in the end, implementations divided into different

scenarios have been realized. As an outcome of this chapter, it can be mentioned the

understanding of the OSM architecture, which led to a proposal to improve the

architecture using ML algorithms in order to detect an optimal alarm threshold.

Chapter 5 introduces the automation platform. This is a new component added

to an existing service chain (Open Source MANO and a virtual infrastructure

manager) to improve the process of deploying and managing network slices. The

architecture of this platform and its role in the new service chain is presented, as well

as its graphical user interface along with its building blocks. A series of experiments

covering various scenarios are presented in the last part of the chapter. The results of

the chapter are the definition of the automation platform architecture, its

implementation and the addition of automation and resource prediction blocks. The

implementation of the platform was validated by performing experiments covering

different scenarios, highlighting its functionalities.

6.2 Original contributions

The original contributions made during the research activity within the doctoral stage

are the following:

1. Summary study of NFV and Network Slicing paradigms [6.3 – 2];

2. Summary study of ML concepts and tools applicable to network slicing

[6.3 – 1];

3. Running the optimization function comparison experiment and interpreting its

results [6.3 – 1];

4. Summary study of the architectural components of the SONATA framework

[6.3 – 6,7,10];

5. Parallel between the SONATA framework and the ETSI NFV mode

[6.3 – 6,7,10];

6. Performing various experiments using the SONATA emulator [6.3 – 6,7,10];

7. Summary study of the architectural components of the OSM framework

[6.3 – 19];

8. Comparison of the OSM framework with SONATA at architecture level and

with ONAP at performance level [6.3 – 19];

9. Proposal of a new sub-module for optimal alarm threshold detection using ML

algorithms within the OSM monitoring module architecture [6.3 – 1];

10. Defining the architecture of the automation platform [6.3 – 3];

11. Design of the graphical user interface of the automation platform [6.3 – 3];

12. Implementation of the automation platform as a web application [6.3 – 2];

13. Implementation and integration of a resource prediction block in the

automation platform [6.3 – 1];

14. Validation of automation platform functionalities through experiments

[6.3 – 1,2];

6.3 List of original publications

During the research activity within the doctoral stage, the author has published a total

of 14 scientific papers related to the PhD thesis field, 6 as first author and 6 indexed in

IEEEXplore. 5 scientific reports have also been added to the list below. During the

PhD training, the author was also involved in two research projects.

1. Cosmin Conțu, Eugen Borcoci, Marius-Constantin Vochin, Frank Y. Li and

Alexandru Aloman, Machine Learning-based Monitoring in Network Slice

Creation and Resource Management, IEEE Access, SUBMITTED (ISI)

2. Cosmin Conțu, Andra Ciobanu, Eugen Borcoci, Marius-Constantin Vochin,

Indika A. M. Balapuwaduge, Silviu Topoloi and Razvan-Florentin Trifan,

Deploying Use Case Specific Network Slices Using An OSM Automation

Platform, 25th International Symposium on Wireless Personal Multimedia

Communications (WPMC) 2022, Herning, Denmark, October 30 – November

2, 2022 (IEEEXplore);

3. Cosmin Conțu, Andra Ciobanu, Eugen Borcoci, Marius-Constantin Vochin,

Frank Y. Li, An Automation Platform for Slice Creation using Open Source

MANO, Proceeding of The 14th International Conference on

COMMUNICATIONS, COMM 2022, Bucharest, ROMANIA, June 16-18,

2022, ISBN: 978-1-6654-9485-4 (ISI, IEEEXplore);

4. C. Conțu, I. Cioarcă, M. Ene, L. Nichifor, Study on Optimal Convolutional

Neural Networks Architecture for Traffic Sign Classification Using

Augmented Dataset, Proceeding of The 13th International Conference on

COMMUNICATIONS, COMM 2020, Bucharest, ROMANIA, June 18-20,

2020, ISBN: 978-1-7281-5611-8 (ISI, IEEEXplore);

5. Andra-Isabela-Elena Ciobanu, Cosmin Conțu, Eugen Borcoci, Marius-

Constantin Vochin, and Frank Y. Li, Optimal Service Placement with QoS

Monitoring in NFV and Slicing Enabled 5G IoT Networks, 2021 IEEE

Globecom Workshops (GC Wkshps): IEEE IoST-5G&B: 2nd Workshop on

Recent Trends of Internet of Softwarized Things - 5G & B, Madrid, Spain, 7–

11 December 2021 (IEEEXplore);

6. A. Țapu, C. Conțu, E. Borcoci, Multiple Chained Virtual Network Functions

Experiments with SONATA Emulator, Proceeding of The 12th International

Conference on COMMUNICATIONS, COMM 2018, Bucharest, ROMANIA,

June 14-16, 2018, ISBN: 978-1-5386-2350-3 (ISI, IEEEXplore);

7. A. Țapu, C. Conțu, E. Borcoci, Network Function Virtualization Experiments

using SONATA Framework, Proceeding of The International Symposium on

Advances in Software Defined Networking and Network Functions

Virtualization SOFTNETWORKING 2018, Athens, GREECE, April 22-26,

2018, ISBN: 978-1-61208-625-5 (Best Paper Award);

8. A. Ciobanu, C. Conțu, E. Borcoci, Study on Use-Cases of Open Source

Management and Orchestration Framework in 5G Projects, Proceeding of

The Nineteenth International Conference on Networks 2020, Lisbon, Portugal,

February 23-27, 2020, ISBN: 978-1-61208-770-2 (Best Paper Award);

9. A. Ciobanu, C. Conțu, E. Borcoci, Charms and Virtual Network Functions

Primitives Experiments using Open Source MANO Framework, Proceeding of

The Sixteenth Advanced International Conference on Telecommunications

AICT 2020, Lisbon, Portugal, September 27 – October 1, 2020, ISBN: 978-1-

61208-802-0 (Best Paper Award);

10. C. Conțu, A. Țapu, E. Borcoci, Virtual Network Function Use Cases

Implemented on SONATA Framework, International Journal on Advances in

Networks and Services, issn 1942-2644 vol. 11, no. 3 & 4, year 2018,

103:112;

11. E. Borcoci, A. Ciobanu, C. Conțu, Layered Network Domain Resource

Management in Multi-domain 5G Slicing Environment, Proceeding of

Advanced Information and Communication Technologies-2019, Nice, France,

July 28-August 2, 2019, ISBN: 978-1-61208-727-6;

12. E. Borcoci, C. Conțu, A. Ciobanu, 5G Slicing Management and Orchestration

Architectures - Any Convergence?, Proceeding of The Eleventh International

Conference on Advances in Future Internet AFIN 2019, Nice, France, October

27-31, 2019, ISBN: 978-1-61208-747-4;

13. E. Borcoci, C. Conțu, A. Ciobanu, On Heterogeneity of Management and

Orchestration Functional Architectures in 5G Slicing, International Journal

on Advances in Internet Technology, vol 13 no 1 & 2, year 2020, 83-96;

14. Cosmin Conțu, Eugen Borcoci, Marius-Constantin Vochin and Frank Y. Li,

Automating Network Slices in Open Source MANO, Proceedings of the

Doctoral Symposium on Electronics, Telecommunications, & Information

Technology SD-ETTI 2023, October 4-6, 2023, Bucharest (DBLP)

15. Eugen Borcoci, Andra Țapu, Cosmin Conțu, D1.2 Virtual Evolved Packet

Core, ORANGE Romania – UPB cooperation project “5G Technologies”,

2018;

16. C. Conțu, Experimente de Virtualizare a Funcțiilor de Rețea utilizând

Framework-ul SONATA, Raport Științific Nr. 1 (nepublicat), Universitatea

Politehnica din Bucureşti, Romania, Iunie 2018;

17. C. Conțu, Cazuri de Funcții Virtualizate de Rețea Înlănțuite Implementate

utilizând Framework-ul SONATA, Raport Științific Nr. 2 (nepublicat),

Universitatea Politehnica din Bucureşti, Romania, Decembrie 2018;

18. C. Conțu, Cazuri de Funcții Virtualizate de Rețea Implementate pe

Infrastructură Fizică utilizând Framework-ul Open Source Management and

Orchestration (MANO), Raport Științific Nr. 3 (nepublicat), Universitatea

Politehnica din Bucureşti, Romania, Iunie 2019;

19. C. Conțu, Managementul Funcțiilor Virtualizate de Rețea și Implementarea

unui “Slice” de Rețea Utilizând Framework-ul Open Source Management and

Orchestration (MANO) – Studii de caz, Raport Științific Nr. 4 (nepublicat),

Universitatea Politehnica din Bucureşti, Romania, Decembrie 2019;

20. C. Conțu, Despre Eterogenitatea Administrării și Orchestrării a

Arhitecturilor Funcționale în Felierea Rețelelor 5G, Raport Științific Nr. 5

(nepublicat), Universitatea Politehnica din Bucureşti, Romania, Iunie 2020;

6.3.1 List of research projects

1. Februarie – Mai 2018: SLICENET: End-to-End Cognitive Network Slicing

and Slice Management Framework in Virtualised Multi-Domain, Multi-Tenant

5G Networks (collaboration between Universitatea Politehnica of Bucharest

and Orange Romania);

2. Noiembrie 2020 – Decembrie 2023: A Massive MIMO Enabled IoT Platform

with Networking Slicing for Beyond 5G IoV/V2X and Maritime Services;

6.4 Perspectives for further developments

The automation platform presented in this paper has succeeded in simplifying the

process of deploying a network slice and giving the operator better control and insight

into the lifecycle of the network slice.

As perspectives for further development, both the quality and quantity of the

datasets will need improvement, the training phase of the resource prediction block

will be automated, and the automation platform will be extended with more features.

Regular updates will also be required to maintain compatibility with new OSM

releases through collaboration with the OSM community, where the author's

organization is registered as an official Participant.

Another direction of development of the platform is to increase its

compatibility with several types of VIM already compatible with OSM (Amazon Web

Services, Microsoft Azure and Google Cloud Platform).

Nevertheless, new use cases for ML algorithms will be studied within the

platform and new blocks will be implemented to support these cases.

Bibliography

[1] 5G PPP Architecture Working Group, View on 5G Architecture, Version 1.0, July 2016.

Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-WP-July-

2016.pdf [Online]

[2] NFV White paper: Network Functions Virtualisation, An Introduction, Benefits, Enablers,

Challenges & Call for Action. Issue 1. Available:

https://portal.etsi.org/NFV/NFV_White_Paper.pdf, 2018 [Online]

[3] R. Mijumbi et al., Network function virtualization: State-of-the-art and research challenges,

IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 236-262, 1st Quart. 2016

[4] 5GPPP Architecture Working Group, View on 5G Architecture, Version 3.0, June, 2019,

Available: https://5gppp.eu/wp-content/uploads/2019/07/5G-PPP-5GArchitecture-White-

Paper_v3.0_PublicConsultation.pdf, [Online].

[5] J. Ordonez-Lucena et al., Network Slicing for 5G with SDN/NFV: Concepts, Architectures

and Challenges, IEEE Communications Magazine, 2017, pp. 80-87, Citation information: DOI

10.1109/MCOM.2017.1600935.

[6] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, Network Slicing in 5G: Survey

and Challenges, IEEE Communications Magazine, May 2017, pp. 94-100

[7] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, Network Slicing &

Softwarization: A Survey on Principles, Enabling Technologies & Solutions, IEEE

Communications Surveys & Tutorials, March 2018, pp. 2429-2453.

[8] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, On Multi-domain Network Slicing

Orchestration Architecture & Federated Resource Control, Available: http://mosaic-

lab.org/uploads/papers/3f772f2d-9e0f-4329-9298-aae4ef8ded65.pdf, 2019 [Online].

[9] ETSI GS NFV 002, NFV Architectural Framework, V1.2.1, December, 2014

[10] ETSI GS NFV-IFA 009, Network Functions Virtualisation (NFV); Management and

Orchestration; Report on Architectural Options, Technical Report, V1.1.1, July, 2016

[11] ETSI GR NFV-IFA 028, Network Functions Virtualisation (NFV) Release 3; Management

and Orchestration; Report on architecture options to support multiple administrative domains,

Technical Report, V3.1.1, January, 2018.

[12] ONF TR-526, Applying SDN Architecture to 5G Slicing, April 2016

[13] 3GPP, “System architecture for the 5G System (5GS),” TS 23.501, R17, v17.5.0, Jun.

2022.

[14] An Introduction to Machine Learning,. Available: https://monkeylearn.com/machine-

learning/ 2023. [Online]

[15] Deep learning vs. Machine learning vs. Artificial Intelligence Available:

https://www.javatpoint.com/deep-learning-vs-machine-learning-vs-artificial-intelligence/, 2023.

[Online].

[16] scikit-learn Machine Learning in Python, Available: https://scikit-learn.org/stable/, 2023.

[Online].

[17] PyTorch, Available from: https://pytorch.org/, 2023. [Online].

[18] NLTK :: Natural Language Toolkit, Available: https://www.nltk.org/, 2023. [Online].

[19] TensorFlow, Available: https://www.tensorflow.org, 2023. [Online].

[20] Mean squared error, Available: https://en.wikipedia.org/wiki/Mean_squared_error, 2023.

[Online].

[21] AdaGrad, Available: https://www.databricks.com/glossary/adagrad, 2023. [Online].

[22] Intuition of Adam Optimizer, Available: https://www.geeksforgeeks.org/intuition-of-adam-

optimizer/, 2023. [Online].

[23] A Look at Gradient Descent and RMSprop Optimizers, Available:

https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-

f77d483ef08b/, 2023. [Online].

[24] Build your first Machine Learning Model using TensorFlow, Available:

https://techwithshadab.medium.com/build-your-first-machine-learning-model-using-tensorflow-

d61b9b2b7d5e/, 2023. [Online].

[25] C. Conțu, I. Cioarcă, M. Ene, L. Nichifor, Study on Optimal Convolutional Neural

Networks Architecture for Traffic Sign Classification Using Augmented Dataset, Proceeding of

The 13th International Conference on COMMUNICATIONS, COMM 2020, Bucharest,

ROMANIA, June 18-20, 2020, ISBN: 978-1-7281-5611-8

[26] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel, J. Lessmann, T. Soenen,

W. Tavernier, S. Mendel-Brin, and G. Xilouris, Sonata: Service programming and

orchestration for virtualized software networks, in 2017 IEEE International Conference on

Communications Workshops (ICC Workshops), May 2017, pp. 973–978

[27] Sevil Draxle et al., SONATA: Service Programming and Orchestration for Virtualized

Software Networks, 2017 IEEE International Conference on Communications Workshops (ICC

Workshops).

[28] SONATA. D2.2 Architecture Design. Available: http://sonata-

nfv.eu/sites/default/files/sonata/public/contentfiles/pages/SONATA_D2.2_Architecture_and_D

esign.pdf, [Online].

[29] The SONATA Gatekeeper, Available: http://sonata-

nfv.eu/sites/default/files/sonata/public/content-

files/article/SONATA_Gatekeeper_SDNWorld_3.pdf, 2018 [Online].

[30] Docker - Build, Ship, and Run Any App, Anywhere. Available: https://www.docker.com/,

2018 [Online].

[31] Gerardo García de Blas, OSM architecture, Available: https://osm-

download.etsi.org/ftp/osm-11.0-eleven/OSM12-

hackfest/presentations/OSM%2312%20Hackfest%20-%20OSM%20architecture.pdf, 2023.

[Online].

[32] Research – OSM Public Wiki, Available from:

https://osm.etsi.org/wikipub/index.php/Research#Sonata, 2019, [Online].

[33] A. Ciobanu, C. Conțu, E. Borcoci, Study on Use-Cases of Open Source Management and

Orchestration Framework in 5G Projects, Proceeding of The Nineteenth International

Conference on Networks 2020, Lisbon, Portugal, February 23-27, 2020, ISBN: 978-1-61208-

770-2

[34] ONAP, ONAP Architecture Overview, Available from: https://www.onap.org/architecture,

2019, [Online].

[35] G. A. Carella and T. Magedanz, Open baton: A framework for virtual network function

management and orchestration for emerging software-based 5G networks, IEEE

Softwarization, July 2016.

[36] Cloudify, Cloudify Orchestration Project Portal, Available from: https://cloudify.co/,

2019, [Online].

[37] OPNFV, Open Platform for NFV (OPNFV) Project Portal, Available from:

https://www.opnfv.org/, 2019, [Online].

[38] 5GCity – A distributed cloud & radio platform for 5G Neutral Hosts, Available:

https://www.5gcity.eu/, 2022, [Online].

[39] 5GTANGO, Available: https://www.5gtango.eu/ 2022, [Online].

[40] METRO-HAUL 5G Project, Available: https://metrohaul.eu/ 2022, [Online].

[41] MATILDA, Available: https://www.matilda-5g.eu/ 2022, [Online].

[42] Subhankar Pal, HD4.3 Closed-Loop Operations: Adding Auto-Scaling & Alerting to VNFs,

Available: https://osm-download.etsi.org/ftp/osm-8.0-eight/OSM-MR9-

hackfest/presentations/OSM-MR%239%20Hackfest%20-%20HD4.3%20-%20Closed-

Loop%20Operations.pdf, 2023. [Online].

[43] D. Johansson, Building maintainable web applications using React, Available:

https://www.divaportal.org/smash/get/diva2:1415320/FULLTEXT01.pdf, 2022, [Online].

[44] React – A JavaScript library for building user interfaces, Available: https://reactjs.org/

2022, [Online].

[45] ETSI, Open source MANO, Available: https://osm.etsi.org/, 2022. [Online].

[46] Canonical, Cloud init – The standard for customising cloud instances, Available:

https://cloud-init.io/, 2022. [Online].

