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Abstract

Polarimetric Synthetic Aperture Radar (PolSAR) data records the scattering diver-
sity by measuring the electromagnetic response in two orthogonal polarization
bases. The interaction of the microwaves with both anthropogenic and natural
media can modify the incident polarimetric state. PolSAR applications exploit the
incident-scattering polarization dependence, which was proven as an important
asset, especially for detection and classification.

The main aim of this thesis is to contribute to the analysis of full-polarimetric
PolSAR data. In line with expected technological developments in the area of radar
instruments, the case of bistatic geometry is discussed. Throughout the work, the
matrix formalism has been assumed for data representation and processing. Be-
cause PolSAR scattering matrices have properties which depend on the scattering
geometry, the methods proposed in the thesis are applicable to the most general
case, i.e., with non-reciprocal data (monostatic or bistatic).

The thesis proposes two frameworks for the scattering matrix based on the Real
Representation and the Polar Decomposition. The two parts are complementary,
with models based on an algebraic vs. geometric processing, on a conjugate similar-
ity vs. similarity factorization or on a coherent vs. incoherent application context.
The first contribution is oriented towards the study of the conjugate similarity in
PolSAR by the use of the Real Representation. The second contribution is based
on the properties of the polar decomposition and the Riemannian geometry of
positive semidefinite matrices. Here, a geometric clustering algorithm, combining
the k-means and a Riemannian geodesic distance is introduced.

Airborne, monostatic, PolSAR datasets alongside simulated monostatic and
bistatic polarimetric data are used for testing the proposed methods.
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Chapter 1

Introduction

1.1 Presentation of the field of the doctoral thesis

Remote sensing allows the detection and monitoring of an object’s physical charac-
teristics, at a distance. Microwave remote sensing is the branch which uses for this
study electromagnetic signals belonging to the radar (or, microwave) frequency
domain (≈ 300 MHz - 300 GHz). It is further divided into active and passive
sub-branches, depending whether the sensor carries, or not, its own signal source.

Active microwave remote sensing is nowadays a conventional technology in
Earth observation applications, seen as a complement to the optical technology,
e.g., due to its unrestricted imaging ability (day or night, all weather). The most
popular radar remote sensing implementation is through the Synthetic Aperture
Radar (SAR) technology. By combining several, adjacent, multi-angle observations,
SAR has the ability to provide high-resolution (nowadays, even around tens of cm)
image-like visualizations of an area’s radar backscattering return.

There has been an increased interest in the last decade in improving multi-
platform (synthetic aperture) radar systems. The 2010 launch of TerraSAR-X’s
twin satellite, TanDEM-X, led to the creation of the first single-pass interferometric
space-based SAR instrument. These efforts highlighted the technological maturity
and potential advantages of multi-platform diversity, such as the ability to perform
simultaneous acquisitions from distinct positions in space in one single-pass. In
addition, the numerous preparatory and exploratory scientific studies provided
through/for the TerraSAR-X/TanDEM-X couple have generated a new surge of
interest towards the development of bistatic/multistatic systems.

By combining sets of multiple observations of the same area, the primary form
of diversity for all remote sensing applications is multi-temporal. With satellite
instruments, the revisit time is periodic and new acquisitions are acquired by
multi-pass. Other forms of diversity are possible in microwave remote sensing.
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Frequency, polarization and spatial (or, multi-platform) become accessible when
the radar sensor is equipped with specialized instrumentation.

The polarization is a wave property defined in a plane transverse to the propa-
gation direction. As a research subject it is studied across disciplines and especially
in domains involving electromagnetic radiation. The polarization may carry the
signature of an absorption/scattering process, quantified through measurable
changes in perpendicular directions of the transverse plane.

In radar polarimetry, the active instrument is the one fixing the polarization
at emission, which will usually be modified by the interaction of the radiation
with the Earth surface, measured at one or more frequencies. Polarimetric SAR
(hereafter, PolSAR) offers access to a multidimensional, simultaneous set of mea-
surements of the radiation reaching the sensor. Crop monitoring, land use/land
cover classification, persistent scatterers detection in urban environment, or the
study of glaciers and Arctic ice are among its principal applications.

This thesis focuses on the study of polarimetric radar diversity with datasets
obtained by acquisition in monostatic or bistatic geometry. New methods and
algorithms for PolSAR processing (linear polarization) are proposed. These are
developed around two working hypotheses, aiming to address current challenges
in radar polarimetry, as follows.

■ Context: Between the end of the 20th century and the beginning of the
21st century, polarimetric diversity was most often combined with multi-
temporal or multi-frequency diversity to obtain composite data sets. Most
of the PolSAR methods are based on the algebraic model of reciprocal data,
meaning they have been developed and tested mainly using monostatic data.

Challenge: Due to the growing interest in bistatic/ multistatic radar plat-
forms, it is expected that such PolSAR data will become accessible in the
future (both as single acquisitions and in composite sets that will exploit the
spatial diversity offered by multi-platform geometries).

Working hypothesis within the thesis: The polarimetric data should no
longer be constrained by the monostatic reciprocity property.

■ Context: The progressive decrease of the size of resolution cells in radar
images has been achieved through technological and data processing de-
velopments. This steady improvement of the spatial resolution has made
SAR images attractive in various practical applications and competitive with
optical sensors.

Challenge: However, it has been shown that statistical model-based methods
used in SAR/PolSAR need to be modified when working with high spatial res-
olution data and many models have been eventually proposed to accurately
represent these statistics [13].
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Working hypothesis within the thesis: The difficulty of choosing an optimal
model could be solved by proposing techniques that do not rely solely on the
statistical distribution of the data.

1.2 Content of the doctoral thesis

Below is a brief summary of the work presented in this thesis.

Chapter 2 sets the main theoretical framework. For this, it introduces the
elementary descriptors of wave polarization, compares the radar versus optical
scattering alignment conventions and the matrix versus vector PolSAR formal-
ism, which are at the core of most analysis methods for coherent and incoherent
decomposition.

Chapter 3 develops from the following question: Which processing is adequate
if one operates under the radar convention, i.e., Backscattering Alignment (BSA),
adopts a matrix formalism computation and deals with radar observations which
are not reciprocal (inherent property, not the result of measurement errors)?

A purely mathematical perspective is necessary at first. We introduce the con-
jugate similarity transformation (hereafter, consimilarity) and propose a solution
based on the real representation. The results returned by this method are proven to
match the ones from the non-negative factorization of the squared scattering matrix,
only in the case when the matrix is reciprocal. The method reveals complex-valued
solutions for the case of some non-reciprocal scattering matrices. The chapter then
explores practical applications for the real representation, particularly through its
eigen-decomposition. Monostatic and bistatic wide-angle polarimetric simulations
of two coherent targets are obtained and investigated on the premise of pursuing
a concrete link between scattering geometry, nonreciprocity and the complex
(con)eigenvalues.

Chapter 4 continues to explore applications under the PolSAR matrix formal-
ism, but considers now an operation based on similarity, i.e., the polar decomposi-
tion. A geometric perspective is adopted in this chapter. The polar decomposition
factors are seen not only as algebraic products, but using well-known results in
information geometry, as matrix terms embedded into a manifold. Eventually,
the proposed method uses exclusively the Hermitian positive definite factor and
operations onto its associated Riemannian manifold. When assuming the PolSAR
vector formalism, the classical incoherent target decompositions (ICTDs) operate
with the sample covariance matrix, which is generally estimated as a weighted
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sum of vector inner products. Differently, we propose to use the intrinsic geometric
mean of Hermitian positive definite matrices, followed by a partitional clustering
algorithm having a geodesic distance for intra/inter-cluster attribution.

Two particularly appealing properties are that the algorithm does not require
any assumption of the data statistical models and does not modify, at any step,
the algebraic matrix structure. Qualitative and quantitative tests are performed
using real and simulated monostatic datasets. Despite this choice, the technique
could be applied to the most general type of polarimetric diversity, i.e., bistatic
full-polarimetric.

Chapter 5 provides an overall focus on the thesis’ contributions and proposes
an outlook on future work. Contributions into peer-reviewed publications and
conferences during the time-frame of this thesis are also listed.

To improve readability, retain the focus of the main chapters on personal con-
tributions, but still provide extensive clarifications where needed, proofs and other
extra material are transferred at the end of the thesis into Annexes A-H.
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Chapter 2

Polarimetric Radar Diversity

The polarization of a wave is generally defined by the oscillation direction of the
electric field components in the transverse plane. It is often understood as the
figure "that the extremity of a (specified) vector field draws as a function of time".
Otherwise, the polarization of an antenna is "that of the plane wave it radiates at
large distances in a given direction" [1, 2].

Conventional radar imaging assumes a monostatic geometry, in which the trans-
mitter and receiver units are co-located. In a bistatic system, the transmitter and
receiver are located in different places and have a considerable (several orders of
magnitude greater than the wavelength) separation (baseline) between them. If
the transmitter and receiver are just separate pieces of equipment, but placed close
together, the geometry is called quasi-monostatic.

A target illuminated in the scene by the radar instrument is known to behave
as a polarization state modifier [16].

For a generic set of polarization bases (X-Y), the change between the incident
and backscattered field components is described through the scattering matrix
(2.1), S∈C2×2:

[
EX

s

EY
s

]
=

[
Sxx Sxy

Syx Syy

][
EX

i

EY
i

]
. (2.1)

Fig. 2.1 Full-polarimetric radar observations.

Targets are expected to have a deterministic or non-deterministic scattering
response. A deterministic target (or single scatterer) has a stable polarization
response over time, which is entirely characterized by its scattering matrix. In con-
trast, the scattering response of a non-deterministic target does not remain stable
and is modeled using stochastic processes. This scatterer is also known as partial
or distributed, with dimensions expected to span several resolution cells [34, 41].
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2.1 Radar and optical coordinate systems

In radar polarimetry, the polarization is a property of both the incoming electro-
magnetic signal and of the active device which emits the radar signal and performs
the measurements. As suggested by the IEEE Antenna Standards, the polarization
of an antenna is that of the wave it radiates, which implies that in the receiving case,
the "coordinate systems used to describe the polarization of the antenna and the in-
coming wave are oriented in opposite directions" [2]. As so, there is a radar-specific,
antenna-oriented convention known as the Backscatter Alignment (BSA) [28].

By contrast, in optics and other domains where polarimetry is used, the conven-
tional coordinate system is the Forward Scattering Alignment (FSA). Comparing
BSA and FSA, the unit vector on the receiving path of the former is represented
with a 180◦ inversion of orientation, with respect to the latter [28].

The distinction between the two is marked in mathematical terms by a conju-
gation operation, introduced on one side of the equality transformation equation.
In this context, the base change relations of the two conventions are different:
whereas FSA exploits similarity transformations performed on the Jones matrix,
BSA exploits conjugate similarity transformations performed on the Sinclair (i.e.,
radar scattering) matrix [21, 32, 41].

2.2 Similarity and conjugate similarity transforma-

tions

Similarity and conjugate similarity are two equivalence relations for complex
matrices. Considering three matrices A,B,C∈Cn×n, one can write:

Tabel 2.1 General equations of similarity and consimilarity.

similarity con(jugate) similarity

AV=VB AX=X∗C

Matrices V and X∈Cn×n are referred as the similarity and consimilarity trans-
formation matrices. However, using a real matrix X∈Rn×n (e.g., an orthogonal
rotation matrix), the consimilarity operation changes into a similarity one.

If matrices V and X are unitary (V
H

V = VV
H
= I and X

H
X = XX

H
= I) the

two operations are assimilated as an eigen-decomposition and respectively, as a
coneigen-decomposition (Table 2.2).

For a symmetric complex matrix A, X is always unitary and the conjugate
similarity is always equivalent to the unitary congruence [20]:
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Tabel 2.2 Eigenvalues/Eigenvectors and conjugate counterparts.

eigenvalue/eigenvector coneigenvalue/coneigenvector

Avn=λnvn Axn=ξnx∗n

ΓΓΓ=(X∗)−1AX=(X−1)∗AX

=(X
H
)∗AX=X⊺AX.

(2.2)

Both the requirement of the conjugate similarity transformation and the ability
to claim the symmetry of the monostatic scattering matrix S are by-products of
imposing the BSA convention. The second weakens the first, so that monostatic
scattering matrices verifying reciprocity are diagonalized under unitary congru-
ence [19, 33, 23]. While this is distinct from the well-known unitary similarity
diagonalization, the computation is always possible and the mathematical formal-
ism is available in PolSAR from the early works of Graves [17], better known in the
mathematical literature as the Autonne-Takagi factorization [18]. This thesis looks
at the case where matrices are no longer symmetric and, as a result, the Graves
factorization can no longer be applied.

With symmetric scattering matrices, S = S⊺, the eigenvalues of the Graves
matrix, G=S

H
S=S⊺∗S=S∗S, are equal to the squared coneigenvalues, whilst its

eigenvectors are equal to the coneigenvectors in this same case [31]. Moreover, if
the eigenvalues of G are equal, this method can no longer be used to solve Takagi’s
factorization [30, 18].

The unitary congruence of symmetric scattering matrices can also be assimi-
lated to the Symmetric form of the Singular Value Decomposition (the SSVD). For
the bistatic case, the SVD is directly proposed as the recommended decomposition
throughout the literature.

It extracts from the scattering matrix two unitary transformations, one char-
acterizing the transmitter-target path (Tx-Tg) and the other the target-receiver
path (Tg-Rx) [11]. When considering the consimilarity operation, these two trans-
formation matrices can only be conjugate pairs. That is why, the consimilarity is
sometimes referred as a special case of the SVD. The connections between the
above-mentioned transformations are shown in Figure 2.2.

The general conjugate similarity transformation for non-reciprocal scattering
matrices has not yet been sufficiently studied in the field of radar polarimetry. In
the first part of the thesis, we argue it can provide new information for the analysis
of scattering matrices.

7
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RECIPROCAL SM NONRECIPROCAL SM

Set of Scattering Matrices

Monostatic
Bistatic
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Fig. 2.2 Conjugate similarity and SVD operations for reciprocal and nonreciprocal
scattering matrices.

2.3 Coherent and incoherent polarimetric decompo-

sitions

SUMMATION MULTIPLICATIVE

• Krogager

RECIPROCAL + 
NONRECIPROCAL 

SM

RECIPROCAL SM• Huynen-Euler 

• Polar

• Huynen SVD

• Lexicographic
• Pauli 

• Cameron

Fig. 2.3 Classification of coherent decompositions.
Horizontal axis: factorization type (summation and multiplicative).
Vertical axis: applicability to reciprocal and nonreciprocal scattering matrices.
Acronyms: SVD: Singular Value Decomposition.

The information potentially contained in multi-polarization observations is
exploited using decomposition techniques, which form a core theory in PolSAR.
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These techniques are used to separate the polarimetric signature captured by the
radar instruments into a combination of simpler scattering responses, to which a
physical significance can be associated. They can be partitioned into coherent and
incoherent methods (Figure 2.3).

■ Coherent decomposition
The coherent methods are divided into two main classes, as they can decom-
pose the scattering matrix via a summation or a multiplicative factorization
[28].

A decomposition by addition uses a set of elementary matrices that form the
decomposition basis. The Pauli matrices are, for example, the standard basis
for the case of 2×2 matrices. These matrices have a physical interpretation
in PolSAR: odd echo, even echo, diffuse and asymmetric mechanisms. Only
the first three components are non-zero when a reciprocal scattering matrix
is decomposed.

A multiplicative decomposition (such as the diagonalization) uses algebraic
operations to extract elementary factors. The Huynen [22] and the polar
decomposition [39] are proposed as examples. The main developments
proposed in this thesis are related to the branch of coherent decomposition.
More specifically, the contributions are based on appropriate multiplicative
factorization methods for reciprocal and non-reciprocal scattering matrices.

■ Incoherent decomposition
The target scattering vector provides an equivalent representation of the
polarimetric information [10, 11]. Its connection with the diffusion matrix
can be represented by a projection into the set of N elements of a summation
basis {Ψ} (Pauli, (·)P , or lexicographic, (·)L , are generally used):

k=Vect(S)=
1
2

Tr(SΨ) (2.3)

I. Full-polarimetric data
Bistatic observations generally use a complete set of four basis matrices,
whereas in the monostatic case (under the reciprocity assumption), the
set of (2×2) basis matrices is reduced to only three.

II. Dual-polarimetric data
For dual-polarimetric data, whether the geometry is monostatic or
bistatic, the target scattering vector has the same dimension, only 2 ×
1 (which corresponds to an incomplete set of two basis matrices). In the
case of linear polarization, there are three possible dual-polarimetric
combinations: HH-VV, HH-VH and VV-HV.

9
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2.4 Application: Dual-polarimetric bistatic and mono-

static VV-HV H-alpha classification

The scattering response of partial/distributed targets is no longer relevant under
pixel-level analysis. In the case of older imaging instruments, the larger the area
on the ground of a resolution cell, the larger the number of real objects interacting
with the radar signal inside this cell.

PolSAR data presents, in this cases, a stochastic nature and the relevant analysis
tools require the computation of higher-order moments. The elementary statistical
model used for the target scattering vector is that of a circular Gaussian distribution
with zero mean [38]. The probability density function associated to the target
vector is:

p(k)=
1

πmdet(C)
exp

(
−k

H
C−1k

)
, (2.4)

m∈{3,4} is the vector dimension, C=E
{

kL kH

L

}
represents the (lexicographic)

covariance and E{·} is the expectation operator.
It is generally considered that the Gaussian model for the target vector best

describes PolSAR data from: a) homogeneous regions or b) for which a large
number of elementary targets are present within the resolution cell (under the
application of the Central Limit Theorem). This is often the case for medium and
low-resolution observations. Because the work presented in the thesis does not
make direct references to statistical models, the simple Gaussian case is implicitly
assumed (that is, the non-Gaussian case for very high resolution data is ignored).
The complex covariance, generally estimated by the spatial mean according to the
maximum likelihood criterion, Ĉ, then follows a complex Wishart distribution with
a probability density function:

p
(
Ĉ
)
=

LqL(detĈ
)L−q

(detΣΣΣ)L
Γq(L)

exp
(
−L·Tr

(
ΣΣΣ
−1Ĉ

))
, (2.5)

where Γq (L) = π
q(q−1)

2 ∏
q−1
i=0 Γ(L−i), Γ(·) represents the standard Euler gamma

function, q is the covariance matrix order and ΣΣΣ = E
{

Ĉ
}

.
The Entropy-alpha classification is, probably, the most popular PolSAR inco-

herent decomposition. The entropy (H) is a eigenvalues-based parameter used
to describe the randomness of a scattering target, while alpha (α) is the average
value of orientation angles (αi) obtained from the eigenvectors. These parameters
are written down as follows:
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H=−
m

∑
i=1

PilogmPi 0≤H≤1 (2.6) α =
m

∑
i=1

Piαi 0◦≤α ≤90◦ [deg.] (2.7)

Pi=
λi

m
∑
j=1

λ j

0≤Pi≤1; 1≤ i≤m (2.8)

If the same definitions and formulas for H and α apply regardless of the polari-
metric dimension of the data (full or dual) [11], their interpretation of scattering
properties changes, in particular for alpha, which loses its rotation invariance
property in dual-pol [12, 3]. This is a known result, mentioned in the literature,
for the monostatic case.

The choice of multi-polarimetric diversity is often subject to trade-offs in real
systems, so dual polarimetry may be often preferred. The application section of
this chapter presents a dual polarization H−α comparison using simultaneously
recorded monostatic and bistatic polarimetric data. The experimental results
indicate that the dual-pol scattering mechanisms involved in the monostatic and
bistatic geometries are sufficiently different that an increase in the alpha value is
observed in the bistatic case for most of the scatterers in the image (Fig. 2.4).

Then, the remainder of the thesis focuses entirely on using a complete polari-
metric framework.
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Fig. 2.4 Monostatic-bistatic VV-HV
dual-pol data.
Simple H−α classifier: (a) Monostatic
dual-pol, Sentinel-1. (b) Bistatic
dual-pol, ground-based receiver. Dual-
pol plane space: (c) Scatterers with
common scattering mechanism in both
monostatic and bistatic results.
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Chapter 3

Real
Representation Scattering Matrix

Transforming a general scattering matrix through a con(jugate) similarity op-
eration is a necessary mathematically procedure under the radar Backscatter
Alignment. Generally, the interest is in recovering the factorization terms, which
under diagonalization are known as con(jugate) eigenvalues and con(jugate)
eigenvectors. These are the two pairs (ξk, xk), k={1,2} which verify:

Sxk=ξkx∗k (3.1)

As discussed in the previous chapter, for non-reciprocal matrices, this operation
can no longer be reduced to unitary congruence. One of the aims of this chapter
is to discuss the challenges and benefits of using the consimilarity transformation
in this case. Known PolSAR techniques apply either the Graves/Takagi unitary
congruence operation for reciprocal matrices or the SVD for non-reciprocal ma-
trices, with a clear distinction that the former applies to monostatic and the latter
to bistatic data. The work presented in this section offers a necessary complement,
for example when non-reciprocal monostatic data is available or as an alternative
to the SVD method for the bistatic case.

3.1 Real Representation Scattering Matrix

To the best of our knowledge, the methods available in the literature for solving a
conjugate similarity transformation between two complex matrices are not direct.
They are based on mappings to an equivalent space where the conjugate similarity
can be evaluated as a similarity equation. Possible mappings present in the
literature are based either on the complex product between the scattering matrix
and its complex conjugate [20], or using a certain type of block matrices [8, 24].
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We prefer to write the scattering matrix using its Real Representation (RR)
[25, 9]. This matrix, SRR∈R4×4 - addressed hereafter as the Real Representation
Scattering Matrix (RRSM), is composed of blocks containing the real and imaginary
parts, operators Re(·) and Im(·), respectively, of the original complex matrix S.

C2x2 

R4x4
 

S

SRR

Scst

(SRR)st

(X*)-1 S X

(Y)-1 SRR Y
similarity

conjugate
similarity

Fig. 3.1 Mapping the consimilarity operation between two complex matrices (S,
Scst) to that of ordinary similarity between two real matrices (SRR, SRRst).

SRR=Re(S)+ jIm(S)=

[
Re(S) Im(S)
Im(S) −Re(S)

]
. (3.2)

3.2 Real concanonical form and properties of the

real representation

The eigenvalues of the RRSM and the coneigenvalues of the scattering matrix share
similar properties: a) they are found in positive-negative pairs which b) are of the
same algebraic type (Table 3.1).

When at least two eigenvalues of SRR are equal, it may not be possible to have
a diagonal form for SRRst . The canonical Jordan form may be used in this case [20]
(for notations, please check Appendix C of the thesis):

(SRR)J=(SRR)st=

[⊕
k1

JpR (λk1)

]
⊕

[⊕
k2

JrpI
(λk2,λ

∗
k2
)

]
. (3.3)

Each positive-negative pair of eigenvalues (with real or complex elements)
of the canonical form (SRR)J will correspond to a coneigenvalue (the positive

14
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Tabel 3.1 Eigenvalues of RRSM and con-eigenvalues/eigenvectors of the SM.

RRSM SM

eigenvalues coneigenvalues coneigenvectors

real

distinct pairs distinct real
independent, orthogonal{λ1,λ2,−λ1,−λ2} {ξ1,ξ2}

equal pairs equal real
a. independent, orthogonal or

b. independent, with

{λ ,λ ,−λ ,−λ} {ξ ,ξ} one coneigenvector and
one generalized coneigenvector

complex
conjugate pairs complex one coneigenvector and
{λ ,λ ∗,−λ ,−λ ∗} {ξ ,ξ ∗} one generalized coneigenvector

value of the pair is chosen). For example, for a real pair of eigenvalues (λ ,−λ ),
corresponds a positive real coneigenvalue ξ =λ , λ >0. A positive-negative com-
plex pair is associated with a complex coneigenvalue. The existence of complex
eigenvalues provides a complete characterization of the case of inhomogeneous
Sinclair matrices (with respect to the consimilarity). For reciprocal scattering
matrices, the Graves-Takagi factorisation is the standard operation for obtaining
the coneigenvalues (Figure 2.2).
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Fig. 3.2 Comparison of absolute difference (∆d) between values obtained by the
Graves method and values obtained using the RR method - Largest coneigenvalue
(ξ1). (a) Color-coded representation. (b) Percentage of RRSM eigenvalues: real
vs. complex.
Legend acronyms: NC (yellow) = Not Compared, NE (black) = Not Equal. Pixels
are assigned in the following gray and blue classes if the values obtained by the
two methods are equal under a tolerance δd ranging from 10−2 to 10−6.

For the monostatic case, the number of matrices returning complex coneigen-
values is generally expected to be small. The polarimetric Brétigny dataset (monos-
tatic, X-band), considered as example, verifies this hypothesis (Figure 3.2b). Figure
3.2a) shows the numerical comparison between the coneigenvalues estimated by
the two numerical methods (Graves-Takagi and RR) for the reciprocal case (with
real values only). In a large percentage, the values obtained are equivalent under
a tolerance δd ≤10−2.

The chapter then goes on to analyze the connection between the non-reciprocity
factor of the scattering matrix [26], ζ = 1√

2
(Svh−Shv)
∥S∥F

, and the complex coneigenval-

ues. Notation ∥S∥F =
(
∑i, j∈{h,v}|Si j|2

)1/2 corresponds to the Frobenius norm. In
this part of the chapter, the methodology uses simulated (monostatic and bistatic,
C-band) polarimetric scattering responses from two metallic objects, considered
as distinct targets in the resolution cell: a dihedral and a square plate. The scat-
tering response of these two targets correspond in the polarimetric theory to two
elementary scattering mechanisms: double and single bounce, respectively.

An electromagnetic computation software is used to obtain the scattered elec-
tric field responses from which scattering matrices are estimated, for each object,
over a wide range of angular values.
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In this short summary, only the dihedral example is considered. The simulated
monostatic data is verified by two different methods: comparison of the simu-
lated radar cross-section with analytic results (Figure 3.3) and the verification
of estimated S matrices using polarimetric parameters (Table 3.2). The same
resources are not currently available for the bistatic case, so the results of the
bistatic simulation are not checked beforehand. Finally, the estimated (monostatic
and bistatic) scattering matrices are put into the form of the real representation
and the percentages of the different RRSM eigenvalues types are computed.

■ Dihedral(monostatic case)

I. Radar cross section verification
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Fig. 3.3 Dihedral - Monostatic result (Vertical Polarisation). (a) RCS Comparison:
Values simulated by CEM software and by analytic formulas (1D, [dBm2]). (b)
Normalized absolute values of CEM simulated electric field Es (3D, [dB(V/m)]).

II. Verification by polarimetric parameters of the scattering matrices estimated
by simulation

Tabel 3.2 Monostatic dihedral. Evaluation based on angular polarimetric
descriptors. Percentage distribution of estimated values in 10◦ intervals between
[0◦, 90◦] (for all observation directions in the investigated range).

90−80 80 - 70 70 - 60 60 - 50 50 - 40 40 - 30 30 - 20 20 - 10 10 - 0

αCloude [11] 28.7 % 18.2 % 12.8 % 9.8 % 15.1 % 8.53 % 4.03 % 1.42 % 1.42 %
αT SV M [40] 28.7 % 17.5 % 11.8 % 9.8 % 12.95 % 11.7 % 4.7 % 1.42 % 1.42 %

For approximately 45% of the scattering directions, the values of the
polarimetric descriptors (αCloude and αT SV M) vary with less than 20◦

degrees around the theoretical value (i.e., 90◦) associated to the dihe-
dral’s scattering mechanism. Although this shows that the dihedral is
generally a stable scatterer, there are also observation directions for
which the obtained values indicate different scattering mechanisms. For
both polarimetric parameters, the results are comparable.
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Fig. 3.4 Dihedral - Bistatic result
Incidence directions : col. 1 : {θi = 0◦,ϕi = 0◦}, col. 2 : {θi = 25◦,ϕi = 0◦},
col. 3 : {θi = 40◦,ϕi = 0◦}. (a)-(c) RRSM eigen-classification. (d)-(f) RRSM
eigen-classification in relation to the bistatic angle, β ∈ [0◦,90◦].

■ Dihedral (bistatic case)

The results obtained from the bistatic simulations, for three incidence
directions (and the same range of backscattering directions, {ϕs∈ [−45,45],θs∈ [−45,45]},
as observed in the monostatic case), are illustrated in Figure 3.4.

The dihedral appears to be a more stable target (compared with the plate’s
bistatic results), but exhibiting complex eigenvalues of the RRSM for certain
scattering directions, oblique with respect to the object’s bisector.

However, these observations are not sufficient to define a criteria linking the
occurrence of such values to the bistatic angle.

It should be pointed out that the RRSM evaluation is incomplete in certain
respects. The decomposition of the real representation block matrix is only applied
coherently, without statistical averaging. This type of evaluation is therefore not
suitable for characterizing distributed targets. Moreover, the influence of coneigen-
vectors has been studied to only a limited extent and should be explored further
in future work.
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Geometric clustering using the
Hermitian polar factor of PolSAR data

This chapter proposes a geometric unsupervised classification algorithm starting
from the polar decomposition of the scattering matrix. The method incorporates the
computation of the centroid of Hermitian polar factors in the Riemannian manifold.

The simplified diagram of a general PolSAR clustering algorithm is shown in
Figure 4.1.

first run
initialization

centroids

distance 
metric

objective
function

class 
assignment

STOP
criterion

recompute

NO

YES

nr.
 clusters

CLUSTERING
ALGORITHM

POLSAR 
data

RESULT

Fig. 4.1 Generic scheme of a centroid-based clustering algorithm for PolSAR data.

4.1 The polar decomposition

The polar decomposition is the factorization of a complex matrix A into the prod-
uct of two terms: one unitary and one complex positive (semi-)definite factor.
There are two form of the decomposition, depending on the placement of the two
factors: (4.1) is the right polar decomposition, while (4.2) is the left polar form.

A=UH (4.1) A=KU, (4.2)

where U ∈Cn×n verifying UU
H
= U

H
U = I is the nearest unitary matrix to A (in

any unitarily invariant norm1, as argued in [35, 27]). The right/left Hermitian

1i.e., a norm satisfying ∥A∥=∥UAVH∥
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matrices H and K are equal only if A is normal. Regardless of choosing (4.1) or
(4.2), the Hermitian term has a unique solution, while the uniqueness of U imposes
that matrix A is nonsingular. Experimental results did not show any difference in
preferring one form or the other. The right polar decomposition of the polarimetric
scattering matrix S is considered by convention in all the results that follow.

■ Complex positive definite factor:

The complex positive definite factor H verifies uHHu ≥ 0 ∀ u ∈ C2×1 and
presents non-negative, real eigenvalues. One such matrix is equally Hermi-
tian, H

H
=H. In the case where the scattering matrix is complex symmetric

(i.e. such as assumed in monostatic), the eigenvalues of the Hermitian factor
share a multi-faceted interpretation: coneigenvalues, equal to the singular
values, equal to the factors of the Takagi decomposition.

The study of the properties of each of the decomposition factors led to the
conclusion that the Hermitian one can constitute a rotation-invariant input.

From a geometric point of view, the space of Hermitian Positive-Definite
(HPD) matrices takes the form of an open conic manifold. Because this takes
the shape of a curbed geometric space, the simple use of Euclidean metrics is
no longer optimal for conventional operations (distance measurement, mean
value, higher order statistics) on the manifold.

■ Unitary factor:

The unitary matrices are the complex counterparts of orthogonal matrices.
Many distance functions are unitary-invariant which means that, as their real
analogues - the orthogonal matrices, they are known to preserve lengths/am-
plitudes. The 2×2 group of unitary matrices is known as U(2) and forms a Lie
group under matrix multiplication. The latter is an algebraic group having
the structure of a smooth manifold.

4.2 On manifolds and Riemannian geometry

A manifoldM is a topological space, similar to an Euclidean space at each small vicin-
ity. At any point X on the manifold, the tangent space TXM can be defined (Fig. 4.2).

A metric on the manifold is a choice of inner product at each X ∈M. When such
an inner product varies smoothly from point to point, it is called a Riemannian
metric. The geodesic of a Riemannian space is imposed by this metric, which fol-
lows the curvature of the space and thus represents the intrinsic way of measuring
distances on the manifold. Other extrinsic metrics can be imposed, but they will
not be optimal (see Figure 4.2a).
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Fig. 4.2 Manifold, tangent space, geodesic (a) Example of a manifold (M) and
the tangent space at point X (TXM). (b) Geodesic and tangent vectors through
the set of points {Xi}, 1≤ i≤5 and the corresponding barycenter.

The space of Hermitian matrices forms a Riemannian manifold and when
endorsed with the Affine Invariant Riemannian Metric (AIRM), the minimum
distance between two matrices A and B is:

dP(n)(A,B)=∥Log(A−1/2BA−1/2)∥F (4.3)

with the geodesic between the points associated to the two matrices, as:

Γ(t)=A1/2
(

A−1/2BA−1/2
)t

A1/2 , t∈ [0,1], Γ(0)=A and Γ(1)=B.

The Riemannian barycentre is the minimizer of squared geodesic distances
between the set of manifold points associated to a set of HPD matrices (Figure
4.2b). There is no analytic solution to the minimization when more than three
matrices are involved, but it has been shown that a minimum exists and is unique
when the estimation is carried out throughout optimization methods [6]. Karcher’s
method, based on a gradient descent implementation, is used in this thesis to
obtain the estimate of the Hermitian barycenter [15].

4.3 Geometric clustering with Hermitian factors

It has been more than a decade since the concepts related to the Riemannian
manifold of Hermitian matrices began to be applied in PolSAR, but exclusively
considering the Hermitian covariance/coherency matrices. Contributions to appli-
cations in unsupervised classification and segmentation [14, 44], change detection
[5, 4], supervised classification [43, 42] as well as speckle filtering [37, 36] can
be mentioned.

The geometric clustering algorithm proposed in this chapter is based on k-means
and it exploits two elementary operations: a) the coherent polar decomposition of
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(a) (b)

(c)

Fig. 4.3 PolSAR Brétigny data. (a) Wishart. (b) Angular geodesic k-means. (c)
Geodesic Riemannian distance k-means.

PolSAR data and b) an incoherent averaging of H factors based on the Riemannian
geometry. This framework no longer relies on the use of covariance/coherency
matrices, but it exploits more directly the space of scattering matrices. No vector-
ization of the data is performed (compared with the case when scattering vectors
are constructed) and the algorithm is designed to exploit the geometric property
of Hermitian factors, which are intrinsically located on the Riemannian manifold.
Rather than using a statistical average of the scattering vectors (as in the esti-
mation of the covariance/coherency matrix), a local average (the barycenter) is
computed using the manifolds’ geodesic metric. The algorithm does not modify
the (algebraic/geometric) structure of the input scattering matrices.

Monostatic polarimetric data (real data for qualitative tests and simulated
data for quantitative tests) is used to evaluate the proposed method. Tests on
real PolSAR data show that the final classification better preserves the texture
information from the original images. For example, an improvement is observed in
the separation of areas having much lower intensities (as for example, on certain
vegetation fields in the Brétigny data, Figure 4.3).
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Conclusions

This thesis makes contributions to the development of methods for polarimetric
radar image processing. These methods are based on the matrix formalism.

The radar geometry can have its own influence in processing the polarimet-
ric response, which led us to explore the monostatic and bistatic paradigms in
Chapters 2 et 3. Full polarimetric diversity is generally assumed throughout
the thesis. Nevertheless, a short example at the end of the Chapter 2 explores
dual-polarisation results for a scene imaged at the same satellite pass by dual-pol
monostatic and bistatic radar sensors. Differences in the interpretation of H−α

parameters between dual and full polarimetry are studied and finally, monostatic
and bistatic results in dual polarimetry are compared. In all other parts of the
thesis, the full polarimetric model is used. The data is single look complex, with
each pixel described by a scattering matrix, S. This model is generally used for
deterministic targets, while the vector formalism using the covariance matrix
applies to computations involving distributed scatterers. The method proposed
in Chapter 3 applies to a coherent target model, while the one proposed in Chapter
4 concerns the classification of real data, where inconsistent scatterers dominate.

5.1 Short summary and contributions

The main ideas presented in these chapters are resumed as follows:

■ Chapter 3:

• Contribution 1: Method for detecting complex coneigenvalues, based on
the real representation

The chapter begins with a detailed mathematical discussion of the con-
jugate similarity transformation: why it appears in PolSAR in relation
to the BSA convention and what methods are known to perform this fac-
torization. After introducing the Real Representation, we explain how
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it can be used in the context of conjugate similarity for reciprocal and
non-reciprocal scattering matrices. Reciprocal matrices have a unique
factorization and experiments from this chapter show that the factors
are the same as those obtained by a decomposition on the power matrix,
S
H

S. For non-reciprocal matrices, the factorization can provide solutions
in the complex plane and at least one of the factors may not be unique.

• Contribution 2: Analysis of real (monostatic) and simulated (monostatic
and bistatic) polarimetric data using the real representation

In the second part, polarimetric simulations obtained using a full-wave
electromagnetic computation software have been used. Such data has
been generated for two coherent targets (a square metal plate and a
right-angle dihedral) in monostatic and bistatic geometries, in each case
considering a wide range of observation angles.

The investigation using the eigen-decomposition of the real representa-
tion scattering matrix was applied to both simulated polarimetric data
and real PolSAR datasets. It was shown that complex coneigenvalues
may appear in both cases. The percentage is low (under 5%) for all
tested monostatic data but becomes more significant with the bistatic
observations.

■ Chapter 4:

• Contribution 1: Analysis of the two factors in the polar decomposition

The first part of this chapter investigates the algebraic and geometric
properties of the two polar factors. The Hermitian term can be assim-
ilated as the rotation compensated, intensity preserving part of the
scattering matrix.

• Contribution 2: Geometric clustering using the Hermitian factors

The embedding of Hermitian polar factors in the Riemannian mani-
fold of positive-definite matrices is the main idea behind the proposed
geometric clustering method. Proceeding the actual clustering, the
Hermitian polar factors from fixed spatial neighborhoods have been "av-
eraged" by a manifold-based gradient descent method, which estimates
a geometric center of mass for the set of matrices in each neighborhood.
This operation can be put in parallel to the estimation of sample co-
variance matrices by arithmetic averaging. The actual clustering has
been implemented as a centroid, partitional-based algorithm having the
AIRM Riemannian geodesic distance for intra/inter-cluster comparison.

In light of this contribution, the method’s performance has been tested
using Hermitian factors from both real and simulated monostatic PolSAR
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data. Compared to the nonsupervised Wishart method, improved quan-
titative and qualitative results are obtained. With real polarimetric data,
the final clustering result is observed to better preserve texture details.

5.2 Perspectives for further developments

Extensions, as well as potential improvements, on each of the two main study axes
of this thesis are discussed in this subsection.

■ Axis 1: Consimilarity and the Real Representation

• The investigation using simulated data did not identify a link between
descriptors of the bistatic geometry (e.g., the bistatic angle) and the com-
plex coneigenvalues. This may suggest that, if existent, the connection
is multivariate, with improved models and tests needed.

• An immediate extension of the work in Chapter 3 is to explore the
(con)eigenvectors information (from the 2×2 scattering matrix, the
4×4 real representation matrix, or both). Descriptive parameters may
be uncovered by the proposal of a new target vector model. In the cur-
rent stage of development, the RR is restricted to coherent applications.
Introducing a unique target vector model would allow its extension by
a covariance-based incoherent decomposition technique.

On a different note, machine learning models could be employed using
features from the consimilarity factorization /the real representation.

■ Axis 2: The polar decomposition and geometric clustering

• The algebraic median is known to be a more robust estimate to out-
liers. Keeping the core ideas of the geometric clustering method, new
tests may switch from the estimation of the Riemannian mean to the
estimation of the Riemannian median [7].

• Differently, the AIRM metric can be changed and compared with other
distance metrics (e.g., the log-Euclidean), still adapted for the HPD
manifold [29]. Also, the partitional-based clustering algorithm may be
changed to other clustering models (e.g., hierarchical).

• A much broader comparison between classical ICTD methods and the
one proposed in the thesis would involve an understanding of the exact
role carried by the manifold dimensions and the difference in informa-
tional content. This may take the form of comparing clustering results
based on the scattering matrix (2 × 2) Hermitian factor, the PolSAR
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(3×3) covariance and the (4×4) positive-definite factor from the polar
decomposition of the real representation.
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