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Chapter 1

Introduction

Over time, the sensors used to capture information about the Earth’s surface have evolved,
and nowadays sensors mounted on satellites orbiting the Earth are used for this purpose.

1.1 Presentation of the field of the doctoral thesis

Remote sensing observations of land cover using optical sensors are generated in the
form of multispectral images. They constitute a collection of information grouped in
several bands, each band being acquired at a certain wavelength. Visual analysis is
generally performed by a human operator using the mapping of the three bands of the
visual spectrum onto RGB (red-green-blue) channels, thus obtaining a representation
as close as possible to natural color. The purpose of this analysis is to identify the key
aspects corresponding to the target application, e.g. flood monitoring, fire monitoring,
detection of changes in urban planning, etc.

Nevertheless, multispectral imaging is sensitive to certain atmospheric conditions
that may affect the visual appearance of the images. Clouds, smoke or fog are different
types of atmospheric phenomena highlighted in the images, especially when using the
classic RGB viewing technique.

Multispectral images can also be affected by artificial artefacts caused by sensor’s
malfunction in the form of certain types of noise or even the complete absence of a band.

1.2 Scope of the doctoral thesis

The thesis aims to address both topics: visualization improvement and band recovery,
having into consideration the theoretical study and elaboration of advanced methods in
RS imagery. The methods are intended for the analysis of multispectral images, having
the goals to develop a framework for image visualization reconstruction containing the
whole information consisted by all spectral bands, and a solution to predict a missing or
corrupted band using only the information from the others spectral bands.



1.3 Content of the doctoral thesis

According to the main research directions followed during the PhD, this thesis is struc-
tured according to the following chapters:

Chapter 2 (Remote sensing basics and challenges) presents the main notions of
remote sensing that are subsequently used in the thesis, the properties of multispectral
satellite images and how to interpret them, distinctive features for the missions whose
products were used in the experimental process, as well as the obstacles encountered
in the analysis of multispectral images, which were the main premises for defining the
main objectives of the thesis.

Chapter 3 (Current context and previous researches) introduces the current context
and the types of solutions addressed so far to solve the two target challenges of this thesis.
The last section briefly illustrates, with reference to previous state-of-the-art research,
the approach used to implement the proposed new methods.

Chapter 4 (Information recovery for visualization) describes in detail the set of meth-
ods developed to value the spectral information available in all bands. The first section
of this chapter proposes a suite of five methods based on a stacked autoencoder (SAE)
to transfer information between bands in order to reconstruct an improved visualiza-
tion. The second section proposes a multi-sensor compatible visualization enhancement
method.

Chapter 5 (Information valorization for band reconstruction) describes in detail the
method of reconstructing a band using prediction based on the spectral information
available on the concurrent bands.

Chapter 6 (Conclusions) consists of four sections that follow the results conclusions
and contributions of the thesis, as well as a list of published papers followed by future
research perspectives.
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Chapter 2

Remote sensing basics and challenges

In this chapter are presented the basic and general principles of remote sensing so that
the context and the data being analyzed to be comprehended.

2.1 Basic understanding

A formal definition for remote sensing could be the methodology of information acquisi-
tion by a sensor about an object without being in contact with it. During the information
acquisition there is an interaction of energy between the sensor and the target. In this
process, the signal detected by the sensor could be represented by solar energy emitted
by the Sun and reflected from the Earth’s surface, energy emitted by the surface itself
or even the sensor’s own pulses emitted and reflected. After detecting and measuring
the energy, the satellite sensor passes the information to a receiving system for a proper
interpretation. The step of analyzing and interpreting the acquired data also is part of
remote sensing and depends on the following knowledge: acquisition process, physical
basis and the methods used to process the initial data,[2].

2.2 Remote sensing systems and signals

As presented in the previous section, remote sensing represents the activity of remotely
sensing information about something without being in contact with it. The sensed
information is represented by electromagnetic (EM) signals which come from different
objects with particular chemical and physical properties. In remote sensing, EM energy
can be sensed as reflection, emission or combined, emission-reflection. Having into
consideration the three ways of sensing energy, there are two types of sensors: passive
and active. The difference between these two is the fact that active sensors have the
ability to emit pulses, not only to receive them. According to their wavelength, the
EM radiations are split into seven categories: gamma rays, x-rays, ultraviolet, visible,
infra-red, microwave and telecommunication, TV and radio.



2.3 Remote sensing images

Optical passive sensors measure EM signals coming from multiple spectral regions, each
region being considered a spectral band. The number of bands classifies the obtained
concatenated result into panchromatic, multispectral, superspectral or hyperspectral
image.

In this thesis, the attention is concentrated over optical sensors and multispectral
images. There are multiple satellite missions, but the products of Sentinel 2 and Landsat
8 are the ones researched into following experiments. Multispectral images are charac-
terized by several resolution types which are defined by the sensor which acquires them:
spatial, spectral, radiometric and temporal resolution.

Translating the original radiance values into brightness levels represents the process
of generating a digital image. The smallest unit which contains brightness value and is
the minimum spatial unit in an image, is called a "pixel". Each band of a multispectral
image is defined by a matrix of pixels. As the display of an image is limited to three
bands, the visualization of a multispectral EO product is usually performed by mapping
the three bands of the visual part of the spectrum corresponding to the reg - green - blue
colors to R – G – B (RGB) channels.

2.4 Remote sensing multispectral image analysis obsta-
cles

A large part of multispectral images are covered to varying degrees by various at-
mospheric phenomena that prevent a proper analysis. Clouds are the main obstacle
encountered in most examples, but there may also be areas covered by fog, haze or
smoke.

Also, in addition to the challenge of analyzing the images obtained in certain atmo-
spheric conditions, there is also the challenge of encountering corrupted images obtained
due to some physical defects of the sensor. These obstacles can also be called artificial
artifacts, and can be found in the form of noises present on one or more bands. Artifacts
can be represented by missing areas, lines of pixels with zero value, or even the complete
absence of a band.
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Chapter 3

Current context and previous
researches

Two major research directions of interest in the field of remote sensing are followed in
this thesis: the harness of the information contained in all spectral bands to obtain a
complete visualization and the recovery of information to rebuild a damaged or absent
band.

3.1 Existing information recovery for visualization pur-
poses

After analyzing the existent methods, their data transformation approach and the purpose
of their application, it may be concluded that, in order to improve visualization for
visual inspection of a human operator, a method that preserves spatial information and
resolution needs to be taken into account. The solution has to be capable of learning
from the spectral space and not from the spatial one. The autoencoder learns to embed
information in an unsupervised way and does not perform any spatial mediation, thus
proving to be a suitable solution to the problem mentioned.

3.2 Lost or degraded information recovery

Over time, different methods have been discovered to approach the subject of reconstruct-
ing a degraded or missing band. They can be differentiated according to the basic used
principle: the information needed to perform the reconstruction. Thus, depending on the
source of this information, four types of methods can be distinguished: spatial-based,
spectral-based, temporal-based (multitemporal) and mixed (hybrid) methods [13].



3.3 New methods to address remote sensing images anal-
ysis obstacles

Since there are different types of obstacles that generate diverse problems, the solution
methods have also to be distinct. The obstacles types presented in the previous chapter
determine the analysis overburden of multispectral images as follows:

• atmospheric phenomena obstruct mainly the visual analysis process;

• artificial artifacts influence any kind of subsequent analysis.

Thus, two different challenges can be developed: improving the visualization to
facilitate the visual analysis process and recovering the missing information from a
certain band to improve the subsequent digital processing. Both challenges can be
addressed based on the fact that in a multispectral image, the information available
from all bands must be exploited. Thus, in order to improve the visualization of images
covered by clouds, haze or smoke, the information available on all spectral bands can be
used, imposing on the advantages of bands with longer wavelengths. Also, to recover the
information from an affected band, the existing correlation between the other spectral
bands can be used to predict the missing data.

Through recent research in the field, the superiority obtained by methods based on
neural networks has been demonstrated. Starting from this premise, this thesis proposes
solutions based on artificial intelligence to address the challenges mentioned above. The
visualization improvement is proposed to be achieved using an autoencoder that embeds
the information from all the spectral bands in the form of a latent representation, mapped
to the RGB channels. The prediction of the missing band is proposed to be obtained
using a convolutional neural network with UNet architecture, which receives as basic
information for prediction the bands complementary to the affected band.

The following two chapters explain in detail methodology, results and evaluation of
the two main contributions proposed in this thesis.
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Chapter 4

Information recovery for visualization

Visualization of multispectral images through band selection methods determines an
information loss that in utmost cases proves to be critical for the adequate understanding
of the represented scene.

4.1 Cross-bands information transfer to improve visual-
ization

This section presents a set of five original different methods to offset the effects caused
by ambiguities, fog, light clouds and smoke by transferring relevant information between
bands in order to visually reconstitute those parts of the image affected by atmospheric
phenomena.

4.1.1 Proposed concept

The principal objective is to improve visualization by reducing the ambiguities and
obstructions generated by the lack of information in the image displayed compared to
all spectral bands in the multispectral product. As such, transformations generating
illuminant invariant features are applied to reduce obstruction. The aim is to accomplish
these objectives without affecting the spatial resolution.

The set of proposed methods is based on a general concept: the use of an autoencoder
to embed information from all bands on only three bands. These resulting bands are
subsequently mapped on the RGB channels and false color visualization is thus obtained.
The methods represent a variation of the actors involved. The motivation behind this
diversity is given by the different utility of each of the proposed approaches.

Figure 4.1 illustrates the general concept underlying the five proposed methods.
An autoencoder is the core and the common part in defining these methods because it
performs the operation of embedding information from several bands to a 3-dimensional
latent representation. This obtained representation is then used for mapping on RGB



Fig. 4.1 General architecture of the five proposed methods.

channels for visualization. The actors that differentiate the five methods are the way
the data enters the network, the input, and the way the error function is computed. The
data can enter the network in the form of radiant values or polar coordinates transformed
values. Regarding the error function, it starts from a general computation that evaluates
the difference between input and output, and changes from one method to another by
including additional evaluations or by transforming the compared values into polar
coordinates or angles.

4.1.2 Multispectral data representation methods

Multispectral remote sensing images are conventionally represented as a plot of the
image features into a multispectral vector space having the space dimension equal to
the number of spectral components. The distance between two vectors, A and B, in this
space, may be computed using the Euclidean or angular distances.

In order to obtain an improved analysis over multispectral remote sensing images
with large cloud coverage or shadows, it was developed an illuminant invariant feature
descriptor based on polar coordinate transformation of the reflectance values [10]. Polar
coordinate transformation represents a computation with the help of which radiances
values are transformed into angles θ and distance ρ . Having a product with N spec-
tral bands, the obtained result consists of N-1 angles and one distance, making the
dimensionality of the two objects equal.

4.1.3 Multispectral image compression into three bands

Autoencoders are neural networks that learn in an unsupervised way to reconstruct
an input, obtaining a latent representation of smaller dimension inside the network, at
the bottleneck layer. The autoencoders include two main structures, an encoder and a
decoder. The input of the encoder, X, represents the object to be compressed, and its
output is a latent embedded representation of the input, H. The output of the encoder
represents the input to the decoder which has the main assignment to reconstruct X using
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H. The result of the decoder, Y, is a representation that must be as similar as possible to
X, having the same dimensionality.

Stacked autoencoder, SAE, represent an enlarged version of a basic autoencoder.
The encoding and decoding operations are performed by sequences of layers and the
symmetry relative to the bottleneck layer is preserved.

4.1.4 Enhanced visualization proposed methods

This section proposes five different visualization improvement methods for multispectral
remote sensing images based on a SAE neural network, as illustrated in Figure 4.1. The
proposed methods represent a diversity of combinations of the previously defined actors,
namely: X and error function.

Spectral input – spectral error (SI-SE)

The purpose of this method is to accomplish the first objective of this chapter by revealing
the hidden details from an apparently accurately displayed scene. The combination of
actors with respect to this method consists of an input of reflectance values and a loss
evaluation using MSE, which stands for mean squared error and is very often used to
compute the error function in neural network models.

Fig. 4.2 SI-SE visualization compari-
son.

Fig. 4.3 SI-SE spectral signature com-
parison.

Apparently similar regions could represent different things and apparently different
regions could represent the same thing, as shown in Figure 4.2. The information
contained by the bands which are not involved into visualization representation may
be different, this observation being also depicted from Figure 4.3, where the spectral
signatures show different patterns among the spectral bands. The bands from the visible
part of the spectrum share the same pattern while, as close as they get to the NIR and
SWIR part of the spectrum, the pattern changes. The latent representation signatures
demonstrate the embedding ability of the network, capturing all different patterns from
all spectral signatures.
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Spectral input – spectral error with color correction (SI-SECC)

The second method comes as an improvement to the first one, meaning that besides
fulfilling the first objective of eliminating the ambiguities, this method aims to keep the
visualization as close as possible to that obtained using the bands from the visual part of
the spectrum mapped on the RGB channels. The actors involved are the spectral values
and the loss computed over an augmented error function of the previous defined one.
Augmentation consists in adding an evaluation in terms of color difference between the
latent values, H, obtained by the encoder and the values of the bands from the visual part
of the spectrum, RGBX . Color difference is computed using the Euclidean distance.

Fig. 4.4 SI-SECC visualization compar-
ison.

Fig. 4.5 SI-SECC spectral signature
comparison.

The comparison between RGB and SI-SECC from Figure 4.4 emphasizes the capa-
bility of the autoencoder to embed information from NIR and SWIR bands because the
smaller water bodies from the left of the sea are not visible in left representation, but
are highlighted with a lighter blue shade in the right one. Figure 4.5 shows the latent
signatures pattern preservation along with the tendency of being more similar with the
visual spectral signatures pattern.

Spectral input – polar coordinates error (SI-PcE)

This method has been developed in order to satisfy both objectives, reduction of ambigu-
ities and visual contamination caused by clouds, smoke or fog. The input is represented
by the spectral features and the loss function implies an error evaluation which com-
putes the MSE between the transformation of X to polar coordinates, polarX , and the
transformation of Y to polar coordinates, polarY .

Watching the graphical representation of the spectral and latent signatures from
Figure 4.7, it can be observed that the signatures patterns of the input are preserved and
embedded into a three bands combination, each different pattern from the input being
dominant over one band in the latent.

Figure 4.6 highlights the better visualization result obtained with SI-PcE. Although
the left side of the figure shows a scene covered by clouds, the right one succeeds to
disclose the Earth surface.
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Fig. 4.6 SI-PcE visualization compari-
son.

Fig. 4.7 SI-PcE spectral signature com-
parison.

Polar coordinates input – spectral error (PcI-SE)

This method aims to accomplish both objectives in terms of visualization enhancement
of multispectral remote sensing images. Also, an additional objective of this method
would be to reduce as much as possible shadows. This supplementary goal comes from
the property of polar coordinates to be illuminant invariant. This method represents the
inverse, in terms of actors implied, of the previous method.

Fig. 4.8 PcI-SE visualization compari-
son.

Fig. 4.9 PcI-SE spectral signature com-
parison.

Figure 4.9 denotes the pattern merge effect that takes place in the latent represen-
tation signature, showing that each band resulted is influenced by all input spectral
features patterns. Figure 4.8 represents a scene of ongoing fire that has an emphasized
visualization using the proposed method. The smoke from the RGB representation is
predominantly removed, making smoked areas, remained vegetation and also the fire
borderline visible.

Spectral input – angular error (SI-AE)

Visible enhancement by means of ambiguities and atmospheric phenomena reduction
are the main objectives of this method. Having as auxiliary purpose to verify the angular
distance property of being invariant to linearly scaled variations of spectral values, is
developed a method that includes this distance in the error function of the neural network.

Latent representation signatures show a mixed preservation of the spectral ones,
each band from the latent space consisting of multiple patterns from the spectral space,
Figure 4.11. Ambiguities are eliminated from the visualization, as Figure 4.10 shows.
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Fig. 4.10 SI-AE visualization compari-
son.

Fig. 4.11 SI-AE spectral signature com-
parison.

Also, smoke and shadows present in the RGB representation are reduced, demonstrating
the illuminant invariance character of angular distance.

4.1.5 Experimental results and demonstration

Sentinel-2 images acquired at different moments of time are used. The footprint of the
analyzed scenes covers multiple regions of the world. All the scenes were resampled
before use so that all bands shall have 10m resolution. Thus, an up-sampling was
performed on bands with 20 m and 60 m resolutions by setting each output pixel
to the nearest input pixel value. The resulting products have the same dimension,
10980x10980x12. The processing level 2 of Sentinel-2 sensor does not contain band 10,
so the resulting product contains only 12 bands.

The SAE architecture used by all methods contains four autoencoders. The encoder
is defined according to a topology that decreases from 12 inputs to 3 according to the
following pattern "12-8-6-3", and the decoder is defined by an ascending topology
following the same pattern. Elu activation and Adam as optimizer were used. The hidden
representation consists of three values for visualization purposes. The training dataset
for all methods consisted of a 4 concatenated subsets of clear, smoky, foggy and cloudy
images and had a dimensionality of 10980x10980x12.

The experimental code was implemented using Python 3.8.5 and TensorFlow 2.3.0
for GPU. To reduce model training time were used a distributed system and parallelized
computation across 8 PCIe-connected K80 GPUs. All the visualization operations were
performed using Sentinel Application Platform (SNAP).

Results are grouped into four scenarios: clear images, foggy images, cloudy images
and smoky images and discussed in the next subsections.

Clear images

Even if a scene does not contain atmospheric phenomena that prevent the information
about the Earth’s surface to be achieved, there can be many hidden details in the spectral
bands not included in the production of the visualization.
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Fig. 4.12 Clear images proposed methods visualization - Bucharest, Romania.

Figure 4.12 demonstrates the benefit of visualizing a representation that contains the
information from all spectral bands, making the differences between apparently similar
regions to be observable. All the five methods accomplish this discrimination obtaining
a contrast between dissimilar regions.

Smoky images

The bands from the visual part of spectrum are often the ones affected by disasters
such as fires, and visualizing such a scene using only three bands could cause a loss of
information about what is under the smoke. Therefore, enclosing the information present
in the NIR and SWIR bands may improve visualization and bring additional information
about the Earth’s surface.

Fig. 4.13 Smoky images proposed methods visualization - Chico, California.

When information about what is under the clouds or smoke is available on at least
one of the bands, a view that includes this information is very beneficial in the analysis
process. Figure 4.13 shows a scene of ongoing fire and demonstrate the advantage
brought by the visualization proposed methods for investigation purposes.

Foggy images

Fog is one of the atmospheric phenomena that can intervene in the visualization and
analysis of the Earth’s surface. The phenomenon of obstruction of visibility is similar
to that encountered in smoke scenes, with the mention that due to the size of the water
droplets that make up the fog, their penetration by the wavelengths available on optical
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sensors, like Sentinel 2, is often impossible. Retrieving information about the terrestrial
aspect becomes impossible in case of a dense fog. Figure 4.14 shows three different
cases of retrieving the information contained in all spectral bands, so that the first two
lines demonstrate the improvement of the contrast and regions distinction, even if the
fog is visible. The third line illustrates a reduction of the surface covered by fog besides
improving the contrast.

Fig. 4.14 Foggy image proposed methods visualization - Parma, Italy.

Cloudy images

Although clouds are of several types, dense or less dense, at a lower or higher altitude,
there are certain situations in which longer wavelengths manage to penetrate them. Most
of the time, not even the wavelengths in the SWIR range of the spectrum manage to pass
through to capture information about the terrestrial aspect.

Figure 4.15 illustrates an example of a semi-transparent cloud, which allows the
observation of scene details.

Fig. 4.15 Cloudy image proposed methods visualization - Kyiv, Ukraine.
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4.2 Multi-sensor method for multispectral image visual-
ization

The method proposed in this section, msSI-SECC, addresses the objective of eliminating
false similarities and dissimilarities between objects through visualization of remote
sensing MS images acquired by more than one sensor. So, the research is performed on
Sentinel-2 and Landsat 8 images.

msSI-SECC is similar with the ones presented in the previous section regarding
the fact that is based on SAE to embed the information from all spectral bands and it
does perform a color correction following the same error function as SI-SECC. But,
significant changes have been performed both in terms of neural network architecture
and with respect to the training data set.

To emphasize the effective gain of the current approach, the results of this method
are compared with three existing exploratory visualization methods: true-color repre-
sentation, the representation resulted from the implementation of minimum redundancy
maximum relevance criteria (mRMR) and principal component analysis (PCA) represen-
tation.

4.2.1 Proposed msSI-SECC SAE architecture and configuration

In this approach, the model of the neural network used to demonstrate the visualization
gain of an embedded representation was in accordance with the theoretical aspects
presented in Section 4.1.4, method SI-SECC.

To obtain a multi-sensor model suitable for both Sentinel 2 and Landsat 8 products,
the training dataset is a concatenation of two scenes, one scene for each type of sensor.
As Sentinel 2 scene is used S2MSI2A product type, processed at level 2, which does
not contain the cirrus band 10, thus resulting 12 bands product. The reason behind not
including this band stands in the fact that it does not contain surface information. Taking
into the consideration that Landsat 8 has only 11 bands, a false band is created for this
type of products and initialized it by 0 values (i.e. zero padding). Before concatenating
the two datasets, their values are normalized separately due to dynamic ranges values.
The dimension of each scene is 4600x4600x12, thus resulting in a 4600x9200x12 training
set.

The products acquired by Sentinel 2 sensor were resampled to 10m resolution and
Landsat 8 products were resampled to 30m resolution. The up-sampling method used is
based on the value of the nearest neighbor.

4.2.2 Classical methods in support of validation

To prove the superiority of msSI-SECC over existing methods are chosen two classical
visualization methods: rendering bands from the visual part of the spectrum (4, 3, 2)
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and rendering the combination of the first three bands ranked using the mRMR criteria.
Besides these classical visualization methods, a well-known dimensionality reduction
method, PCA, was used as comparison.

The bands selection according to the mRMR criteria was obtained using the DAS-
Tool plugin of SNAP [3], which implements the algorithm according to [11].

PCA is one of the most popular methods for data reduction. It represents a linear
transformation based on the covariance matrix and its eigenvalues.

4.2.3 Experimental results and validation of msSI-SECC

The results evaluation involves both visual and mutual information analysis. Figure 4.16
illustrates the visual representations of the true-color(first column), PCA (second col-
umn), mRMR(third column) and proposed method(fourth column). The first row shows
a Sentinel 2 scene and the second one a Landsat 8 scene.

(a)

(b)

Fig. 4.16 Experimental results for a Sentinel-2 scene and a Landsat 8 scene.

Visually it may be concluded that the proposed method succeeds to embed the whole
information while preserving the color code of the objects, as it can be observed in
Figure 4.16. PCA also accomplishes to show some differences that are not visible in the
RGB representation, but the display do not resemble with a true color image. mRMR
criteria could be misled by anomalies encountered in different spectral bands.

msSI-SE method results evaluation

msSI-SE is a multi-sensor method that respects the input - error function pair according
to the SI-SE method, but follows the implementation details of the network and the
training/test data set corresponding to the msSI-SECC method. msSI-SE involved
the exclusion of the color correction adaptation at the error function level present in
msSI-SECC.
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The results of msSI-SE compared with the RGB and mRMR representation are
highlighted in Figure 4.17.

(a)

(b)

(c)

(d)

Fig. 4.17 RGB vs mRMR vs msSI-SE and mutual information quantization; a) and b)
represent Sentinel-2 scenes, while c) and d) represent Landsat 8 scenes.

The most frequent top ranked bands by mRMR criteria which increase the distinction
between semantic classes are 1,2,8 and 9. From the experimental results we conclude
that the autoencoder method usually emphasizes details and successfully distinguishes
the similarities and dissimilarities between scene objects.
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Chapter 5

Information valorization for band
reconstruction

Concerning the problem of a missing or degraded spectral band, this chapter presents
a method of valorizing the spectral information available in the other bands in order to
predict it.

5.1 Proposed concept

Having the main objective of maximizing valorization of spectral information in the
interest of reconstructing through prediction a band from a multispectral image, this
thesis proposes a method to extract that information from the concurrent spectral bands
of the same product.

Fig. 5.1 Proposed method concept for
band recovery. Fig. 5.2 UNetBRec architecture.

Figure 5.1 illustrates the general overview of the method. The convolutional neural
network, UNetBRec, receives as input all spectral bands but the one to be predicted and
returns as output a single band with the same width and height. In the training process,
the network evaluates a comparison between the true and the generated bands in order to
adjust its parameters and obtain a better result.



5.2 Band reconstruction for multispectral images

As a consequence of deep learning based methods emergence and usage in many fields,
it was demonstrated that impossible to solve problems using a classical method, became
approachable and even solvable using diverse types of neural networks.

5.2.1 Proposed deep learning architecture

U-Net [12] is a state-of-the-art CNN build upon on the "fully convolutional network”
introduced by [6]. The main characteristic of this network is its u-shape architecture,
containing a contracting path and a expanding path. The contracting operation is obtained
through pooling operators, while the expanding is achieved through upsampling operators.
The two branches, down and up, are interconnected through concatenation operations in
order to pass spatial and spectral information. So, the symmetry between the two parts
of the network is almost perfect. This work proposes a modified architecture of U-Net,
UNetBRec, presented in Figure 5.2.

5.2.2 Physics aware multispectral image band reconstruction

The exclusive use of information from the concurrent spectral bands can generate, in
addition to band reconstruction, an improvement in terms of resolution. An important
characteristic of a band is its spectral signature. In the process of a band reconstruction
through prediction, the preservation of the signature demonstrates the effectiveness of
the method applied.

Reconstruction of 60 m spatial resolution bands

S2 has three bands at 60 m resolution, but as we use the Level 2 products, band 10 is not
included due to the fact that it does not contain surface information. The left two bands
with 60 m resolution are band 1 and band 9.

Figure 5.3 presents a examples of 60 m resolution band reconstruction, emphasizing
the resolution improvement as all contours are more precise. Also, next to the visualiza-
tion comparison there is a graph showing the spectral signature of both initial (blue line)
and reconstructed (red line) bands.

Although the spectral signatures are not identical and do not follow exactly the same
pattern, the effect could be explained by the super-resolution itself. Many similar pixels
from the initial band that define an area not very well delimited, in the reconstructed
band may have contrasting values in order to define a better contouring of the objects
from the Earth’s surface.
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(a) Initial (b) Reconstructed (c) Spectral signature comparison

Fig. 5.3 60 m resolution band reconstruction - visual comparison to emphasize resolution
improvement and spectral signature graph to highlight the pattern preservation and
development.

Reconstruction of 20 m spatial resolution bands

The number of bands with 20 m resolution in S2 products is equal to six, namely
the bands number {5,6,7,8A,11,12}. Being the resolution that most of the bands are
acquired at and being a very small difference compared to the highest resolution, 10 m,
the reconstruction is made more accurately. The minor difference between the initial
band and the prediction being visible in terms of brightness, both in spectral signature
pattern and bands visualization.

Figure 5.4 illustrates an example for a 20 m resolution band prediction.

(a) Initial (b) Reconstructed (c) Spectral signature comparison

Fig. 5.4 Example of 20 m resolution band reconstruction - visual comparison to em-
phasize resolution improvement and spectral signature graph to highlight the pattern
preservation and development.

Unlike the bands with 60 m resolution, in the case of 20 m resolution bands, from
a visual point of view, pixelation differences are no longer noticed, and the spectral
signatures keep exactly the same pattern, in some cases they are even overlapped, which
means that they are identical from point of view of the amplitude of the pixel values.

Reconstruction of 10 m spatial resolution bands

Four bands of a S2 product have 10 m resolution, naming the bands number {2,3,4,8}.
First three of these bands have wavelengths from the visual part of the spectrum and
are highly used for the true color representation of the image. The fourth one, band 8,
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has its wavelength in the NIR part of the EM spectrum and is approximately centered
positioned in the range of wavelengths available in a S2 product.

(a) Initial (b) Reconstructed (c) Spectral signature comparison

Fig. 5.5 Example of 10 m resolution band reconstruction - visual comparison to em-
phasize resolution improvement and spectral signature graph to highlight the pattern
preservation and development.

Figure 5.5 illustrates an examples of a 10 m resolution band prediction. As regards
to resolution, it was neither improved nor worsened, so that the original quality of each
band was preserved. Also, the spectral signatures graphs highlight the maintenance
of the pattern, registering small amplitude differences between the original and the
reconstructed.

5.3 Experimental results and evaluation

In this section are presented all details regarding used datasets for training and testing,
full experimental implementation and metrics used to evaluate the proposed method.
Finally, experimental results are presented and analyzed.

5.3.1 Train and test datasets

Sentinel-2 products were used for both training and testing. The size of each image is
10980x10980x12.

To create the training data set, a subset of 10944x10944x12 was taken from each of
the two images. Next, the subset was divided into patches of 304x304x12, resulting a
number of 1269 patches from each image. Finally, the sets of patches obtained from
the two images were concatenated, thus creating a training dataset of 2592 patches with
a size of 304x304x12. For testing, each of the images went through the same process
as for training: up-sampling, subset selection and patching process, except for the final
concatenation. In that way, each image could be passed through the testing process
sequentially.
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5.3.2 Implementation details

The proposed method implementation was achieved using Python 3.6.13 and TensorFlow
2.3.1 for GPU. Training step was performed on a distributed system containing a Intel(R)
Xeon(R) E5-2620v4@2.10GHz CPU and 8 PCIe-connected Tesla K80 GPUs, with
12GB of RAM each.

As the number of bands of a Sentinel-2 image is twelve, were trained twelve models,
one for the reconstruction of each band. The networks were trained having different
batch sizes and number of epochs. The duration of one model training took about 45
minutes.

The filters for the convolutional layers were set the following way: first two had
88 filters, next two 704, following another two with 1408, next three with 704, another
three with 88, one with 11 and the last one with 1 filter. For numerical stability the pixel
reflectance values were scaled so that the resulting interval be [0, ..,255].

5.3.3 Evaluation metrics

In order to quantitatively evaluate the results obtained by the proposed method, different
state-of-the-art indexes which measure the accuracy of spatial and spectral profiles
preservation were used: RMSE (Root-mean-square-error), SSIM(Structural similarity
index) [15], SRE(Signal to reconstruction error) [5], PSNR(Peak signal to noise ratio) [4]
and SAM(Spectral angle mapper) [16]. The metrics implementation used in this thesis
was the one proposed by [7]. The code, implementation details and instructions for usage
are available on GitHub [14].

5.3.4 Results and discussion

The performance of UNetBRec is both quantitatively and qualitatively evaluated. For
quantitative analysis, state-of-the-art image reconstruction assessment metrics are com-
puted for UNetBRec and other state-of-the-art methods in order to critically study their
achievements. The qualitative analysis is performed by visually comparing the results
obtained with the ground truth.

Quantitative analysis

The main evaluation metrics of the quantitative comparison are RMSE, SSIM, SRE,
PSNR and SAM. UNetBRec has twelve versions, one for each band prediction. An
overall comparison, as regards to used metrics, shows that depending on the resolution
of the band, the image for which it is tested and the differences between the reflectance
values, the evaluation metrics lay within an acceptable range in terms of performance.
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RMSE SRE SAM
Superres 68.95 46.01 1.02
DSen2 25.14 51.10 0.78
VDSen2 23.31 51.73 0.76
UNetBRec 12.99 61.89 0.79

Table 5.1 Average computed metrics compared between SoA methods and UNetBRec

As baseline methods, are used the ones proposed by [5], DSen2 and VDSen2, and [1],
Superres. UNetBRec obtains the desired band using the complementary ones, while the
competition use all bands, to retrieve super-resolution ones. Average results over all test
images and all bands are displayed in Table 5.1.

Qualitative analysis

The qualitative analysis of the results obtained with UNetBRec involves comparing the
reconstructed band with the original one, also visualizing the difference computed pixel
wise between them.

B1

B7

B3

Fig. 5.6 Band wise qualitative evaluation of UNetBRec over a scene covered by fog and
thin clouds, Kyiv, Ukraine; first column - initial band, second column - predicted band,
last column - difference.

Figure 5.6 ilustrates one example of reconstruction which is not influenced by high
contrast between the edges of the reflectance values range. The reconstruction of any of
the bands is carried out with high accuracy, which can be seen from the visualization of
the difference. The method manages to show only slight traces of a behavior involving
large errors along high-contrast edges.
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Chapter 6

Conclusions

Remote sensing data are the main sources of information for many earth observation
applications. Multispectral imagery contains much information available in multiple
spectral bands. But for some reasons the data may be obstructed or even missing.
Depending on the nature of the obstruction, two research directions have been considered
in this thesis, based on the same principle: the exploitation of the information available
in all bands. The directions involved the information valorization to reconstruct and
improve the visualization of a multispectral image and information valorization to predict
a missing band.

6.1 Obtained results

The research directions pursued in this thesis led to the development of several methods
to address the main goals.

Regarding the improvement of the visualization of a multispectral image using a
SAE, with respect to all developed methods it can be concluded that:

• SAE is suitable for compressing spectral information in the form of a latent
representation used for visualization;

• the illuminance invariance character of the polar coordinate transformation demon-
strates its superiority in terms of removing atmospheric effects from the images;

• the color correction applied in the SI-SECC method is advantageous in the case of
the elimination of similarities and dissimilarities, having an appearance closer to
the natural color representation;

• the PcI-SE method also succeeds in fulfilling its additional objective of eliminating
shadows;



• although the SI-SEE and SI-SECC methods were not developed with the aim
of eliminating atmospheric phenomena, they achieve an improved visualization
compared to RGB;

• both msSI-SECC and msSI-SE methods prove superiority regarding state-of-the-
art solution;

• the methods are not mutually exclusive, either of them may have better results in
certain scenarios.

Regarding the results of the band prediction method using the spectral information
available in the competing bands, the following can be concluded:

• the spatial and spectral correlation between bands allows the prediction of a
missing one without too much loss;

• UNetBRec achieves, in addition to band recovery, an improvement for bands with
lower resolution;

• the similarity metrics (RMSE, SRE and SAM) used to compare the proposed
method with baselines showed the superiority of UNetBRec;

• the interconnection through concatenation operations of the two branches of the
U-shaped convolutional network is the main factor that leads to an improvement
in resolution.

6.2 Original contributions

The thesis contributions consisted of:

• developing a set of SAE based methods for improving the visualization of multi-
spectral spatial images by removing misleading similarities and dissimilarities or
eliminating atmospheric effects [ 1, 2, 3, 4, 5] ;

• development of a method based on a U-shaped convolutional network for re-
constructing a missing spectral band using only the complementary bands [ 4]
;

• understanding existing methods [ 3] and implementing them in operational tools
to improve the analysis process of multispectral spatial images in ESA funded
research projects [ 1, 2, 6] .

The references in this section refer to the numbers associated with the publications
in the following section.

Also, a list of all thesis contributions to research projects can be found in the
Appendix A.
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6.3 List of original publications

Journals

1. Grivei, A. C., Neagoe, I. C., Georgescu, F. A., Griparis, A., Vaduva, C., Bartalis,
Z., and Datcu, M. (2020). Multispectral Data Analysis for Semantic Assess-
ment—A SNAP Framework for Sentinel-2 Use Case Scenarios. IEEE Journal of
selected topics in applied earth observations and remote sensing, 13, 4429-4442.
DOI10.1109/JSTARS.2020.3013091.

2. Coca, I., Coca, M., and Datcu, M. Autoencoder based method for multispectral
images visualization, U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 2, 2021.

3. Neagoe, I. C., Coca, M., Vaduva, C., and Datcu, M. (2021). Cross-Bands Informa-
tion Transfer to Offset Ambiguities and Atmospheric Phenomena for Multispectral
Data Visualization. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14, 11297-11310. 10.1109/JSTARS.2021.3123120.

4. Neagoe, I. C., Vaduva, C., and Datcu, M. (2022) Band reconstruction using a
modified UNet for Sentinel-2 images. to be submitted to IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing

Proceedings

1. Neagoe, I., Faur, D., Vaduva, C., and Datcu, M. (2018, July). Exploratory visual
analysis of multispectral EO images based on DNN. In IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Symposium (pp. 2079-2082). IEEE.
DOI: 10.1109/IGARSS.2018.8518414.

2. Vaduva, C., Georgescu, F. A., Griparis, A., Neagoe, I., Grivei, A. C., and Datcu,
M. (2019, July). Exploratory search methodology for sentinel 2 data: a prospect of
both visual and latent characteristics. In IGARSS 2019-2019 IEEE International
Geoscience and Remote Sensing Symposium (pp. 10067-10070). IEEE. DOI:
10.1109/IGARSS.2019.8900349.

3. Coca, M., Neagoe, I., and Datcu, M. (2020). Physically Meaningful Dictionaries
for EO Crowdsourcing: A ML for Blockchain Architecture. In IGARSS 2020-
2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 3688-
3691). IEEE. DOI10.1109/IGARSS39084.2020.9324361.

4. Neagoe, I. C., Vaduva, C., and Datcu, M. (2021, July). Haze and Smoke Removal
for Visualization of Multispectral Images: A DNN Physics Aware Architecture. In
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
(pp. 2102-2105). IEEE. DOI: 10.1109/IGARSS47720.2021.9553735.
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5. Coca (Neagoe), I., Vaduva, C., Datcu, M. (2020, September). Perspective Deep
Sensing: Making Visual Multispectral Earth Observation Images. ESA EO φ -
WEEK 2020, e-Poster, section EO Applications, paper 201, ESA

6. Vaduva, C., Georgescu, F.A., Grivei, A.-C., Coca (Neagoe), I., Griparis, A.,
Bartalis, Z., and Datcu, M. (2020, September). Sentinel-2 data analysis based on
explainable features and exploratory visual analysis. ESA EO φ -WEEK 2020,
e-Poster, section EO Applications, paper 193, ESA

6.4 Perspectives for further developments

The results obtained in the research of this thesis generate new development horizons. In
terms of visualization methods, the perspectives could be the following:

• integration as alternative options for quick visualization within the Copernicus
Open Access Hub platform

• integration into active learning applications

Concerning the perspectives for development of the results obtained with the band
reconstruction method, the directions could be the following:

• implementation and testing of the solution for multiple sensors

• further research to develop the method into a super-resolution one
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Appendix A

Contributions in funded research
projects

eVADE
eVADE (Interactive Visual Analysis Tool for Earth Observation Data) is a project

financed by European Space Agency, carried out in the period 2017-2019. The main
objective of this project was to offer an improved and ingenious way of visualizing EO
data sets content by using a visual analytics process.

The contribution of this thesis within eVADE research project consisted in: the
collaboration in the implementation of 3D projection visualization within the web
interface.
DAS-Tool

DAS-Tool is the abbreviation for Multispectral Data Analysis Toolbox for SNAP –
ESA’s SentiNel Application Platform. DAS-Tool project, financed by European Space
Agency, took place during 2017 - 2019 and had the main objectives to elaborate algo-
rithms directed for the semantic analysis and content description of Sentinel 2 images.

The contribution of this thesis in the development of this project consisted in: analysis
and research over exploratory visual analysis band selection state-of-the-art methods and
implementation of mRMR criteria based method for band selection and polar coordinates
for pixel based processing.
xAI

Explainable Deep Learning for Earth Observation (xAI), being a national project,
carries out starting from 2021 until 2023 and aims at valorizing the remote sensing data
by developing new explainable neural networks based methods for EO images.

This thesis contribution within xAI research project resided in: development of
unsupervised SAE based set of methods of cross band information transfer for improving
multispectral images visualization, development of a DNN physics aware method for
haze and smoke removal and the publication of a journal paper [8] and a conference
paper [9].
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