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Part I

Introduction and Theoretical
Background

Chapter 1

Introduction

1.1 Domain of the thesis

The era of big data presents an important challenge for data analysis, processing and
learning, as information become available in such a volume. In this context, images,
video, audio, text, and other metadata are challenging to explore and analyze. To take
advantage of such data, machine learning and deep learning approaches, in particular, are
developed to analyze either independent modalities or the whole multimedia spectrum.
Several of the consolidated studies results of state-of-the-art deep learning techniques
show that they are capable of discovering complex patterns in massive data sets, owing
to their superior representation capabilities for high-dimensional data, which, when
combined with their classification capabilities, outperforms traditional descriptors and
classifiers significantly. Such approaches become more and more feasible, transitioning
from hypotheses to tangible systems and applications in many fields such as computer
vision, economics, medical, to name a few. Nevertheless, there are still many emerging,
niche or complex domains and issues that do not benefit from the deep learning endow-
ment. The research communities are still exploring the full extent of what deep learning
can achieve. In this context, this thesis studies and explores deep learning-based methods
for multimedia classification with applications in consecrated and emerging topics. All
this effort is directed to form a factual basis for every machine learning practitioner.

1.2 Motivation of the thesis

The number of applications that can be developed using machine learning, and par-
ticularly deep learning, is virtually endless. Nonetheless, many more applications are
entirely beyond the capabilities of existing deep learning approaches. One such sector
is medicine, where several automated segmentation registration methods have been
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investigated and proposed for application in clinical settings. Even though medical
images provide a lot of information, they are difficult to use in clinical practice due
to their inherent unpredictability. Another example is the financial domain, where the
data represented by commodity price, stock price, or exchange rate is unknown at t +1
making it extremely difficult to train deep learning approaches considering that they
are notoriously data-hungry. On top of the aforementioned challenges, there is another
factor that plays an important role in beating the human performance barriers with deep
learning in more specialised domains. This is the lack of deep learning practitioners.
One reason is this domain’s inherently difficult interdisciplinary nature, requiring strong
applied mathematics, programming, and domain-specific knowledge to understand, build,
run, and validate approaches based on deep learning.

All these aspects motivated me to study these extremely challenging domains and
collect in this thesis valuable information regarding training supervised deep neural
networks alongside good practices capable of boosting networks performances, lessons
learned, and useful lessons for the future.

1.3 Content of the thesis

The thesis is structured as follows: Chapter 2 covers the underlying techniques that
underpin practical implementations of deep learning. Part II presents my contributions
to the field of medical, computer vision, machine learning, and financial, to name a
few. It starts with methods related to the medical domain involving tuberculosis types
detection, multi-drug resistance prediction, and lipreading in Chapter 3, followed by
methods related to surveillance involving person re-identification and person search
in Chapter 4, methods related to the multimedia data involving ensemble learning in
Chapter 5, methods related to financial domain involving stock trend classification in
Chapter 6, and a series of common evaluation frameworks regarding interestingness
prediction, violence detection and face identification in Chapter 7. The thesis concludes
with Chapter 8 with some major findings and suggestions for future study, as well as an
overview of my published works and my contribution to them.

Chapter 2

Deep Neural Networks
This chapter provides a timely review and survey of deep learning architectures, their
applications and limitations. It aims to provide the readers with a background on various
designs and the latest progress and achievements.
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2.1 Convolutional Neural Networks

Structurally, CNNs contain a list of convolutional layers stacked one over the other, with
each layer arranged in a 3D way, namely width, height, depth, similarly to an RGB image.
This arrangement allows the network to recognize sophisticated shapes sequentially,
from the initial pixel values to the predicted class scores. The following subsections
describe such deep learning architectures in timely review and survey.

2.1.1 CNN Building Blocks

Convolution is a linear operation that measures how well two functions overlap at
different locations. CNNs are usually used with images, 3D tensors with two spatial
coordinate indices and one channel selection index. Pooling is a function expressed as
a fixed shaped array that traverses all regions in the input, performing a down-sample
of the input by yielding a single value at each location. Filter hyperparameters are
composed of: (i) the dimensions of the filter, (ii) the stride which denotes the steps
by which the filter traverse the input image and, (iii) the padding which denotes the
operation of bordering an image with zeros.

2.1.2 VGG

The VGG architecture proposes small (3×3) convolution cores with the justification
that a stack of two 3×3 filters has a 5×5 size receptive field, and a stack of three 3×3
convolutional layers has a receptive field of size 7×7.

2.1.3 GoogleNet

GoogleNet [38] consists of 22 layers with a relatively complex architecture called
"inception" that aim to solve the issues imposed by the principle of depth of neural
networks, namely: (i) the large number of parameters, and (ii) computing resources.

2.1.4 ResNet

ResNet [13] advents that deeper networks must be at least as efficient as equivalent
shallower networks. It achieved this by learning the residual difference between the
input and the mapping function.

2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs)are powerfull and robust algorithms capable of re-
membering their input by using an internal memory, giving them the ability to be precise
in predicting future sequences.
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2.2.1 Long Short-Term Memory

Long short-term memory networks networks [14] represent an incremental improvement
of recurrent networks that allow the extension of the memory. This improvement allows
the network to learn long-term dependency.

2.3 Attention Mechanisms

Attention mechanisms [40] are essentially functions that map relevant context in the form
of queries and key-value pairs to an output. Assuming there is an arbitrary query, attention
mechanisms learn to attend to intermediate representations via attention pooling.

2.4 Good Practices for Deep Learning

This section investigates common methodologies and good practices for training deep
learning architectures.

2.4.1 Data augmentation

One can produce additional data from the limited existing samples via various geometric
transformations, color space transformations, kernel filters, mixing images and random
erasing [28], to name a few.

2.4.2 Hyper-parameter tuning

The main hyperparameters are the following: (i) Learning rate which controls how fast
a model reaches convergence, (ii) Number of Epochs which controls how many times
the weights are updated, (iii) Hidden Layers which connect the input and the output
layers of a neural network, Their role is to apply nonlinear transformations of the data.
and (iv) Activations Functions which introduce non-linearity in the network.

2.4.3 Transfer learning

The motivation of transfer learning is that the network will be able to generalize faster
on fewer examples if it uses the variations on rich, well-defined tasks.

2.4.4 Fine-tunning

Fine-tunning is a deep learning methodology consisting of using the weights of an
existing neural network trained on a source data and initializing a new model of the same
network on the target data from the same domain.
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2.5 Current Limitations of Deep Learning

Every instance in deep learning is represented as a vector, which means that everything
can be viewed as a point in a geometric space. Model inputs (which might include sound,
text, videos, etc.) and targets are transformed into some initial input vector space and
a target vector space, respectively. Each layer in a deep learning topology performs
just a single geometric transformation on the data that passes through it throughout its
computation. When combined, the sequence of layers results in a very complicated
geometric transformation that seeks to fit the input to the target space, using a number of
different transformations. It is possible to parametrize this transformation by updating
the weights of the layers repeatedly, based on the network performance at a point in
time. It is crucial to note that this geometric transformation must be differentiable to
update parameters using an optimization algorithm for finding a local minimum. Another
limitation of deep learning models is that they do not have any comprehension of the
data they receive. Furthermore, when it comes to generalization, deep learning models
are only competent in local generalization, which means they can only adapt to new
situations that are very similar to previous data.

2.6 Conclusions

Supervised deep learning has had a significant impact in the last decade, pushing state-of-
the-art systems in speech recognition, computer vision, recommender systems, language
understanding and medical image analysis, to name a few many fields. While different
aspects of supervised deep learning are well researched, becoming a practitioner requires
a certain level of expertise to avoid overfitting the model and achieve desirable results.
Furthermore, training supervised models is a laborious and time-intensive task, as the
predictive capabilities of such systems depend on the quality of the data. It is well known
that supervised deep learning architectures are data-hungry, and such data may have a
certain likelihood of human error, impacting the quality of the predictions. Despite these
shortcomings, supervised deep learning is pushing the boundaries in many industries and
domains. Regarding the current limitations, the reader should note that the only concrete
achievement of deep learning thus far has been the capacity to perform input-to-output
mappings using a continuous geometric transform in the presence of enormous volumes
of human-annotated data. While successfully doing this is transformative for virtually
every field, it is still a long way from human-level performances without tackling other
barriers such as reasoning and abstraction.
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Part II

Personal Contributions

Chapter 3

Medical Applications

3.1 Deep Learning for Finding and Classifying Tuber-
culosis Types for a Targeted Treatment

3.1.1 Introduction

ImageCLEF1 is an image retrieval and analysis assessment campaign in which algorithms
are evaluated on an equal footing. One of the medical tasks at ImageCLEF 2017 was
focused on tuberculosis (TB) data processing from chest CT (Computed Tomography)
images. Two distinct subtasks were proposed to the participants: (1) Multi—drug
resistance (MDR), and (ii) Tuberculosis type (TBT). The reader can find here [33] the
main paper.

My contributions to these tasks are the following: i) exploration of fully automatic
methods for segmentation of the lungs in CT volumes, ii) proposed an RGB modality
that allows for applying good practices for training DNNs methods, and iii) fine-tune
SOA DNNs on medical data achieving second place teamwise in the TBT prediction
competition.

3.1.2 Proposed approach

We developed our approach on top of the effective GoogleNet architecture described
in [38]. We chose this design due to its better resource efficiency, which enables us to
expand the depth and width of the network while maintaining a consistent computational
budget, allowing for efficient training in a reasonable period. In terms of volume
structure modeling, a technique based on sparse structural sampling proved advantageous
alongside with various training methods to address the challenges associated with a small
number of training examples. These techniques include cross-modality pre-training and

1http://www.imageclef.org/
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data augmentation with improved features. We use the supplied lung mask for both
subtasks and extract the slices using a sparse structural sampling approach . Next, we
extract features from each slice of the patients’ CT volume using a deep CNN. Finally, we
average the scores and perform training-classification on new instances using a Softmax
classification.

Multi-Drug Resistant Detection

Run 1: Rank 7: In net training, we used data augmentation by sampling a 224×224
sub–image randomly cropped from the selected frame. In the test phase, given a volume,
we extract all the slices. The class scores for the whole volume is then obtained by
averaging the scores across the slices.

Tuberculosis Types Detection

Run 1: Rank 3: In this run, we used the RGB transformation as the input of the
network finetuned on the ImageNet dataset. At test time, given a volume, we extract
all the slices (samples). The class scores for the whole volume are then obtained by
averaging the scores across the slices. Finally, we use a softmax classification to achieve
the training–classification of new instances. This yields an accuracy of 46% on the
validation set.

Run 2: Rank 8: In this run, we used a grayscale transformation by discretizing
the slices into the interval from 0 to 255 via a linear transformation. We pretrained
the network using the ImageNet dataset and modifying the weights of the resulted
convolution layers of the ImageNet RGB model. At test time, given a volume, we extract
all the slices and averaged the scores across the slices and crops therein. Finally, we use
a Softmax classification to achieve the training–classification of a new volume. This
yields an accuracy of 41% on the validation set.

3.1.3 Results

In the MDR subtask, the proposed approach obtained the 7th position according to the
accuracy (0.5352) out of 28 participant runs. For the TBT subtask the submitted runs
that obtained the 3rd and 8th position out of 23 runs submitted for this task, with a top
Kappa value of 0.2329.

3.1.4 Conclusions

In this study, we present two completely automated tuberculosis categorization tech-
niques and one automatic predictor for estimating the likelihood of TB patients develop-
ing multi-drug resistant TB. We evaluated various effective methods for training CNNs.
The methods obtained an accuracy of 38.7% on the TB type dataset and 51% on the
MDR dataset when using the suggested training procedures.
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3.2 Deep Learning for Multi–Hypothesis Captions Pre-
diction in Medical Images

3.2.1 Introduction

Visual interpretation and summarizing has generated increasing attention in the computer
vision and natural language processing communities due to the advent of automated
understanding of images and the availability of reasonable explanations. In this context,
automated captioning of medical images promises to assist healthcare practitioners with
important insights, while reducing their overall workflow impact. Due to its vital role,
the Medical Image Captioning challenge investigated in ImageCLEF 2017 [18] advances
medical image information mapping methodology in pursuit of improved methodologies
for summarizing visual information from medical images. For more information, the
reader is directed to the main paper [35].

My contributions consist of i) proposing a multi–hypothesis captions prediction
DNN for medical images, ii) a method for codding the concepts based on one-hot
encoding approach, and iii) exploration of the National Library of Medicine for building
a hierarchy of concepts.

3.2.2 Proposed approach

To solve this task, we address the semantic gap between captions (text) and the image.
With this in mind, we present a flexible deep CNN that accepts an arbitrary number
of hypotheses as input and produces final multi-label predictions at the output. Our
method takes advantage of the ResNet–152 [13] model. In this context, we pretrained
the network on the ImageNet dataset and used it as the network’s initialization, with a
Sigmoid Cross Entropy Loss Layer in the training phase and a Sigmoid layer in the test
phase, producing a probability distribution across the classes. The labels were encoded
using the one-hot-encoding technique. Finally, we constructed a concept list for the test
images by experimentally setting a threshold over the scores.

For all trials, we present the official metric, namely F1 score. For our approach, we
pretrained the network on the ImageNet dataset and finetuned it on the target dataset
by taking images of size 256×256 pixels without performing any data augmentation
during training. No external resources are used to augment the data set in our approach.

3.2.3 Results

We submitted one run to the concept identification task as part of our participation. Using
the protocol descrived in the previous section, we achieved an F1 score of 0.089.
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3.2.4 Conclusions

This section introduces a framework for addressing the issue of multilabel image cat-
egorization. However, owing to the high number of parameters to be learnt, training
a multilabel CNN is not suitable on noisy datasets with a limited number of training
examples. Therefore, we demonstrate how a CNN trained on single-label image datasets,
such as ImageNet, may be used to the multi-label issue to alleviate the aforementioned
issue.

3.3 Deep Learning for Lip Reading: Toward Language
- independent Lip Reading

3.3.1 Introduction

Lip reading is the process of interpreting spoken words from visual information, in
particular visemes that are represented by lip dynamics, with many practical applications
including hearing aids and helping hearing impaired individuals. In this study, we
propose to exploit existing language knowledge and generalize to new languages via
transfer learning by leveraging the knowledge from a source domain to a target domain.
Our intuition is that such techniques will relax the hypothesis that the training data must
follow certain rules such as being independent and identically distributed with the test
data. Furthermore, we have generated a small scale multilingual dataset called LRM
(Lip Reading Multilingual), based on the already available lip reading dataset to validate
our hypotheses.

My contribution comprises of i) analyzing and implementing good practices for
training deep neural network and tailored data reprocessing for visual lip reading, and ii)
developed visual lip reading models for heterogeneous hardware using Graph Lowering
techniques. to prove the feasibility of such systems in the context of the massive
computationally intensive demand for both training and inferencing such models. To the
best of our knowledge, we were the first research group to release a lip reading dataset
and models for Romanian language. The reader can find here [20] the main paper.

3.3.2 Proposed approach

We explore a popular lip-reading approach, namely the D3D (DenseNet 3D) [31] fol-
lowed by a set of good practices for training lip-reading models for visual speech
recognition. In this regard, we discarded redundant information in order to concentrate
on the discriminative region. To recognize facial landmarks, all of the images from the
sequences are first passed through the MTCNN face detector [44] and aligned using
the detected landmarks, and finally normalized to the overall mean and variance. The
resulting mouth images are augmented using affine transformations and padded to the

9



Table 3.7 Classification accuracy on the multilingual LRM dataset. In bold are the best
results.

Model
Invdividual

subset

Acc. Top-1
hard hard+easy

Val Test Val Test

D3D

LRM 0.625 0.620 0.752 0.745
LRW 0.835 0.830 0.836 0.847
LRRo 0.578 0.614 0.885 0.892
LRW-1000 0.463 0.418 0.535 0.496

same length to effectively unify to mimic variations across the multilingual datasets.
These stages were established experimentally after evaluating a variety of configurations.

We validate our hypotheses using three publicly available word-level datasets,
LRW [2] for English, LRW-1000 [43] for Mandarin, and LRRo [19] for Romanian.
Furthermore, by combining the data subsets we create a multilingual dataset. The pur-
pose of this dataset is to determine whether existing techniques are capable of learning
the composition rules for various languages and then using that information to learn to
fill in the blanks when necessary using similar language rules. For all trials, we present
three measures: the top-1 accuracy, top-5 accuracy, and the Cohen’s Kappa coefficient to
account for the data variety.

3.3.3 Results

We provide the study results for the multilingual dataset in this section.

Multilingual Learning

On the hard subset of the LRRo, the multilingual transfer strategy outperformed the
transfer learning strategy by 14.1 and 0.2 percentage points, respectively. A similar
increase of 8.4 and 18.5 points was observed in the easy+hard subset. Finally, we observe
an improvement of 1.1 points for the D3D on the hard+easy subset of the LRW-1000
dataset.

3.3.4 Conclusions

The results show that transfer learning improved with each of the learning protocols
on both, the individual subsets and the multilingual dataset, creating a general dataset
is another way to deal with unbalanced data and multilingual learning is word length-
independent, making it possible for multiple languages to be utilized.
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Chapter 4

Video Surveillance

4.1 Joint Person Detection and Re-identification

4.1.1 Introduction

Person re-identification addresses the problem of searching specific persons across
spatially non-overlapping cameras, by estimating visual similarities between different
probe-gallery pairs.

My contribution consists of proposing an end-to-end framework for person re-
identification that perform both person detection and classification, in contrast to general
approaches that use an oversimplified protocol which assume that the spatial coordinates
of each person from the gallery are given and perfectly aligned. The reader can find
here [36] the main paper.

Fig. 4.1 The proposed end-to-end very deep network: (1) human detection, (2) segmen-
tation, (3) features extraction, (4) softmax classification [36].

4.1.2 Proposed approach

The proposed system comprises of four processing stages. as depicted in Figure 4.1.
In the first step, we recognize humans in video streams by predicting vector fields that
directly disclose the relationship between anatomical components in an image. Our
model was trained using the annotation in the MSCOCO dataset.The second step is to
segment the human body components. A color image is fed into the human detection
CNN to jointly predict confidence maps for body part detection and vector fields. For
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each individual in the picture, the outputs are the 2D positions of anatomical key-points.
We combine them into full-body postures for all of the persons in the shot and create
the maximum bounding box for each of them. In the third step, we perform the feature
extraction, where body images are converted into meaningful content descriptors.The
final stage is feature extraction, which converts full body images to meaningful content
descriptions. This was accomplished by utilizing the VGG network described in [29].
Finally, we use a softmax classification to achieve the training–classification of new
instances.

Evaluation

For evaluating our system, we used SCOUTER augmented the dataset using a 10 crops
strategy.To assess retrieval performance, we use a global measure of performance, namely
the MAP.

4.1.3 Results

We compare our adapted network architecture with the state-of-the-art, in this sec-
tion.Given the specificity of the task, i.e., automated video surveillance, we tested two
approaches: i) training from scratch; ii) pre-training last layer. Our first approach,
training from scratch, achieves a MAP of 60.56% whereas our second one, pre-training
last layer + fine-tuning, achieves a MAP of 66.86% outperforming the other existing
approaches with 5 respectively 11 percents.

4.1.4 Conclusion

In this section, we tackled the challenge of person re-identification by developing a
trainable end-to-end deep neural network capable of accurately re-identifying persons in
multiple-stream video from a variety of sources (indoor and outdoor).

4.2 Person Search

4.2.1 Introduction

Given a query image, person search attempts to locate the specified person in a gallery
of images using the query image. It is a generalization of the traditional person re-
identification classification problem [46, 17], which is predicated on two assumptions,
namely: i) the spatial coordinates of each person in the gallery are provided, and (ii) the
spatial coordinates are properly matched. However, these two assumptions do not hold
true in actuality. In this section, we take advantage of the deep learning advancements,
and propose an end-to-end person search framework that integrates multiple DNN
architectures.
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The contribution beyond state of the art can be summarized with the following: (i)
we integrate attention mechanisms in the stem CNN to train the network to attend to rep-
resentative parts in pedestrain patches. This allow the network to focus on discriminative
regions, e.g., face and body parts, or on different accessories such as glasses, bags, etc.;
(ii) we perform spatial transformations to increase the robustness of the system to spatial
variances. The reader can find here [32] the main paper.

4.2.2 Proposed approach

In this part, we offer a thorough description of the proposed person search network. In
addition, to increase the algorithm’s predictive capacity, we research, test, and incorporate
attention layers into the design. The methodology for conducting a unified person search
consists of three parts: (i) global features, which are low-level features extracted from the
entire input image, (ii) region proposals for converting low-level features into pedestrian
proposals, and (iii) local features, which are discriminative features corresponding to
the image’s identities. We developed and evaluated three common deep neural networks
(DNNs) from the literature as the backbone of our architecture, namely GoogleNet [38],
ResNet50 [13], and DenseNet121 [16].

Evaluation

We evaluate our proposed method on three large-scale end-to-end person detection and
re-identification benchmarks, namely: PRW [47], CUHK03 [25], and CUHK-SYSU [42].
For each data set, we adopted the original evaluation protocol that the data set provides,
namely the mean average precision (mAP). Finally, the results are obtained in a single-
query setting, without re-ranking.

Table 4.3 Effectiveness of the person search framework expressed in mAP (IoU > 0.75).

Method PRW CUHK03 CUHK-SYSU
GoogleNet 0.263 0.668 0.685
ResNet50 0.327 0.714 0.753
DenseNet121 0.335 0.703 0.778
GoogleNetatt 0.281 0.694 0.692
ResNet50att 0.347 0.721 0.775
DenseNet121att 0.358 0.717 0.783

4.2.3 Results

We compare our proposed person search framework (with or without using attention
mechanisms) using three consecrated deep networks, namely GoogleNet, ResNet50, and
DenseNet121 as the backbone of the framework to evidentiate their utility in person
search. The results are summarized in Table 4.3. DenseNet121 surpasses the other two
networks on two out of three data sets. The tendency holds for variations with attention
mechanisms,which consistently outperform the baseline variations.
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4.2.4 Conclusions

Extensive experiments show that the attention mechanism consistently improves the
overall performance of the system, achieving a mAP score of 0.358, 0.721, and 0.783 on
the PRW, CUHK03, and CUHK-SYSU data sets, respectively.

Chapter 5

Ensemble Learning

5.1 Deep Learning for Ensemble Systems

5.1.1 Introduction

An ensemble is defined as a collection of independent classifiers (inducers), each with
its own area of competence, and a learning or combination algorithm that generates a
new output based on the separate outputs of inducers in order to predict future incoming
instances. It presents a strategy for late fusion based on a set of systems. The objective
of ensembling is to produce a powerful learner based on the expertise of the numerous
classifiers it contains. In this section, we present a deep ensembling architecture, which
is a deep learning-based technique for discovering patterns and correlations between the
responses of individual classifiers.

Concretely, contributions consists of: i) proposing a novel network builder of end-
to-end deep architectures, The architectures are built in a progressive order, simplest
models first while varying the numbers of dense layers, the numbers of neurons for each
dense layer, and including or excluding batch normalization layers, ii) developing deep
neural networks tailored for ensemble learning, and iii) validating the systems on a large
collection of common evaluation frameworks under various formulations, from binary
classification/regression to multi-label classification. At publishing time, these methods
outperformed literature state-of-the-art with a great margin on all the data sets. The
reader can access the full papers here [4, 3, 34].

5.1.2 Proposed approach

The proposed method follows the hypothesis that by aggregating using a deep neural
network architecture, we can more efficiently describe the bias learnt by each system and
the correlations across the biases, all while lowering the variance, allowing for robust
retrieval. To do this, we utilize straightforward yet efficient deep neural network designs
based on dense and attention ensembles.
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Fig. 5.2 Proposed deep ensembling architectures: variable number of dense layers (L),
variable number of neurons per dense layer (N), and variable number of filters for the
convolutional layer (F) [34].

Dense Architecture

Given that dense architectures are universal approximators able to learn any function,
we stack such dense layers to create a first baseline ensemble network. To begin, we
define a set of criteria for constructing network topologies, which include the following:
i) altering the number of fully-connected layers, (ii) varying the number of neurons in
each fully-connected layer, and (iii) including or removing batch normalization layers.
The diagram of the implemented dense architecture is presented in Figure 5.2a.

Dense Architecture with Attention

To increase the accuracy of the ensemble architecture, we augment our baseline ensemble
rules with soft attention mechanisms. In this regard, feature maps are multiplied by
soft maps with values between 0 and 1. A diagram of the proposed implementation is
presented in Figure 5.2b.

5.1.3 Predicting visual interestingness

The MediaEval 2017 Predicting Media Interestingness data set [8] provides data for
two scenarios: (i) prediction of image visual interestingness (INT2017.Image), and
(ii) prediction of video visual interestingness (INT2017.Video).We have considered all
the systems participating in the benchmarking campaign, namely 33 systems for the
INT2017.Image, and 42 systems for the INT2017.Video prediction tasks.

Evaluation

The evaluation is carried out using the following test data split scenarios: (i) 75% training
and 25% testing (RSKF75), and (ii) 50% training and 50% testing (RSKF50). Split
samples are randomized, and this action is performed multiple times to obtain a thorough
coverage. In the end 100 partitions are generated. The metrics are computed as average
values over these partitions.
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Results

This section presents the results of the best-performing architectures. The achieved
results are summarized in Table 5.1. For the INT2017.Image data, the best performing
dense architecture uses 10 dense layers and 1,000 neurons per layer, without batch
normalization, achieving a mAP@10 of 0.3355 for the RSKF75 split and of 0.2316
for RSKF50. The addition of attention layer further increased the results, the best
performing architecture with the RSKF50 split achieving a mAP@10 of 0.2399. For the
INT2017.Video data, the best performance with a dense architecture is achieved using
25 layers and 2,000 neurons per layer, with batch normalization, yielding a mAP@10 of
0.2677 and 0.1562, for RSKF75 and RSKF50, respectively.

5.1.4 Predicting violent scenes

The MediaEval 2015 Affective Impact of Movies (VSD2015.Video) data set [30] is
composed of 31 full movies, 86 YouTube videos and 10,900 short clips extracted from
199 movies of various genres (up to 96 hours). We have considered all the 48 systems
trained in the competition.

Evaluation

For assessing performance, we use the official metrics released by the authors of the data
(on which the inducers were optimized), name the Mean Average Precision. The metrics
are computed using the standard treceval software tool.

Results

The achieved results are summarized in Table 5.1. For the VSD2015.Video data, an
architecture with 5 dense layers and 500 neurons per layer achieved the highest perfor-
mance for the dense architecture, with a mAP of 0.6341 for the RSKF75 split and of
0.6192 for the RSKF50. The best results for the RSKF75 split are obtained with an
attention architecture, mAP of 0.6486.

5.1.5 Predicting emotional impact of movies

The MediaEval 2018 Emotional Impact of Movies [7] is a data set for automatic recogni-
tion of emotion in videos, in terms of valence, arousal, and fear. We have considered
all the systems participating in the benchmarking campaign, namely 30 systems for the
valence and arousal prediction task, and 18 systems for the fear detection task.

Evaluation

To evaluate the performance of the proposed models, we have adopted the official metrics
released by the authors of the data, namely: (i) for the MediaEval 2018 Emotional Impact
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Table 5.1 Results for the INT2017Image and INT2017Video with mAP@10 metric,
VSD2015 with mAP metric, Caption with F1 metric, Arousal-Valence, with MSE and
PCC metrics and Fear, with IoU metric.

System Split
INT2017

Image
(mAP@10)

INT2017
Video

(mAP@10)

VSD2015
Video
(mAP)

Caption
(F1)

Arousal
(MSE)

Arousal
(PCC)

Valence
(MSE)

Valence
(F1)

Fear
(IoU)

SOA orig 0.1560 0.0930 0.3030 0.2823 0.1334 0.3358 0.0837 0.3047 0.1575
Best-LF KF75 0.1674 0.1129 0.3920 0.2846 0.1282 0.3911 0.0769 0.3972 0.1621

DF-Dense
KF75 0.2316 0.1563 0.6192 0.3462 0.0549 0.8315 0.0626 0.8101 0.2129
KF50 0.3355 0.2677 0.6341 0.3740 0.0571 0.8018 0.0640 0.7876 0.1938

DF-Attn
KF75 0.2399 0.1668 0.6228 0.3522 0.0548 0.8339 0.0626 0.8107 0.2140
KF50 0.3389 0.2750 0.6486 0.3659 0.0568 0.8036 0.0640 0.7888 0.1913

of Movies data set, we use the Mean Square Error (MSE) and the Pearson’s Correlation
Coefficient (PCC) for the valence and arousal prediction task, with MSE being the
primary metric, and Intersection over Union (IoU) of time intervals, for the fear detection
task.

Results

The achieved results are summarized in Table 5.1 . For the Arousal-Valence data, the best
performing DF-Dense architecture managed to improve those results, reaching to 0.0549
and 0.0626. The DF-Attn network further improved these results. For the Fear data,
the best performing DF-Dense configuration achieves a score of 0.2129, increasing the
state-of-the-art result by 35.17%. Furthermore, both the DF-Attn configuration increases
the score with a maximum IoU of 0.2242, representing a approx. 42% increase over the
original performance.

5.1.6 Concept detection

The ImageCLEFmed 2019 Concept Detection (denoted Caption) is an automatic multi-
label classification image captioning and scene understanding data set.We have consid-
ered all the systems participating in the benchmarking campaign, namely 58 systems.

Evaluation

To evaluate the performance of the proposed models, we have adopted the official
metrics released by the authors of the data, namely, the F1-scores computed per image
and averaged across all test images. The metrics are computed as average values over all
the partitions.

Results

The achieved results are summarized in Table 5.1. The best performing DF-Dense
configuration is represented by a 5 layer network, with 500 neurons per layer and no
batch normalization. This configuration achieves an F1-score of 0.3740, increasing the
state-of-the-art results by 32.48%.
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5.1.7 Ablation Study

Table 5.6 Analysis of the results in correlation with the inducer performance and diversity.
We present the scores recorded by the best and worst inducers, the best results for both
RSKF75 and RSKF50 splits, the diversity measure (r̄) and the percentage increase over
the best performing inducer (δ75 and δ50).

Run INT2017.Image INT2017.Video VSD2015.Video
Best Ind. 0.1385 0.0827 0.296
Worst Ind. 0.0126 0.0396 0.0419
r̄ 0.225 0.1017 0.1997
RSKF75 0.3436 0.2799 0.6486
RSKF50 0.2399 0.1692 0.6281
δ75 148.08 238.45 119.12
δ50 73.21 104.59 112.19

An important analysis is to study the influence of the system diversity on the results.
To do so, we employ the Pearson’s correlation coefficient. The methodology is described
in the extended version of the thesis. Given the xi input vector for a sample i of size k,
representing the output scores of each classifier, { f0, f1, ..., fk−1} (see equation 5.4), we
choose to decorate each element of this vector with output scores and correlation scores
from the most similar systems with respect to output. Therefore, given the matrix Y (see
equation 5.5) where each of the yi vectors represents the scores given by the classifier fi

for all the samples, we calculate the similarity between each classifier via the PCC. The
descending ordered vector of correlations for each yi vector would correspond to Ri (see
equation 5.6), where R0,i is the correlation coefficient of the most similar system. R1,i

represents the correlation coefficient of the second most similar system and so on. The
final decorated version of the input is represented in equation 5.7, where, for each sample
i, the pairs (c0, j,i,r0, j,i) represent the output score (c) and Pearson’s correlation score
(r) for the most similar system with any given system score s j. the pairs (c1, j,i,s1, j,i)

represent the second most similar system, and so on. The decorated vector xdi size is
3k×3.

xi =
[
s0,i s1,i ... sk−1,i

]
(5.4)

Y =
[
y0 y1 ... yk−1

]
(5.5)

Ri =
[
R0,i R1,i ... Rk−2,i

]
(5.6)

xdi =

r3,0,i c0,0,i r0,0,i r3,k−1,i c0,k−1,i r0,k−1,i

c3,0,i s0,i c1,0,i ... c3,k−1,i sk−1,i c1,k−1,i

r2,0,i c2,0,i r1,0,i r2,k−1,i c2,k−1,i r1,k−1,i

 (5.7)

By taking the correlation coefficient vector Ri corresponding to each classifier fi (see
equation 5.6), we can calculate the average value of this vector R̄i. In the final step,
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the overall correlation for all the inducer systems, r̄, is calculated as the average of
all R̄i values and will be used as a measure of diversity for the inducers. Just like
Pearson’s correlation coefficient, lower values of r̄ indicate a lower correlation between
systems and, therefore, more diversity. Table 5.6 presents the results of this analysis.
The results show that, for the RSKF75 split, the highest growth (δ75) is recorded by the
INT2017.Video systems, which increase the best inducer’s result by 238.75%. This is
interesting as the inducers for the INT2017.Video date are the most diverse set out of all
three tasks, r̄ = 0.1017. However, this observation is not consistent with the RSKF50
split, where the second most diverse inducers, VSD2015.Video data, r̄ = 0.1997, show
the highest increase, δ50 = 112.19%, while the INT2017.Video inducers come in second
place, with δ50 = 104.59%. This could be a confirmation that the RSKF50 split may
provide too few samples for the tasks.

5.1.8 Conclusions

We presented a method for deep ensembling that utilizes architectures composed of dense
and attention layers. The primary advantage of the proposed architecture is its ability
to find connections between inducer systems automatically. The results demonstrated
a significant improvement over inducer systems and state-of-the-art approaches, with
many instances exceeding by at least a factor of two the mAP performance.

Chapter 6

Fintech

6.1 Deep Learning for Financial Time Series Prediction

6.1.1 Introduction

Predicting stock markets is of great interest in financial economics with several empirical
studies suggesting that stock markets are predictable to some extent. This section
proposes to study the potential of deep representations learning as a mechanism for stock
return prediction that targets both synthetic data generation and trend prediction1. The
main papers can be accessed here [11, 10].

6.1.2 Proposed approach

Given an entire stock universe U , we propose to analyse each stock and search a predic-
tion function f to predict each stock return at time t +1,rt +1. given the representation

1This work is the result of research funded by Hana TI.

19



ft , which can be either a linear or nonlinear transformation of the raw data Rt extracted
at time t. In our research, we use the past returns of stocks. Given M stocks in U , and g
lagged returns, R is represented as Rt =

[
r1,t , ...r1,t−g+1, ...,rM,t , ...,rM,t−g+1

]T .

Synthetic data generation

We synthesize time-series with quantitative properties comparable to that of the original
financial time-series by targeting the statistical properties such as distributional, depen-
dence, pathwise, cross-sectional properties within similar ranges with the original data
set. The entire process is described in [11, 10]. Our GAN model synthesises an entire
window in contrast to classical approaches that synthesises the (n+1)th sample, based on
the preceding n samples. Therefore, we produce a fixed-length 1d vector of log return of
Close prices. We assessed the quality of the models by randomly selecting a batch of
both real and synthetic data for each epoch and analyze their distribution. We further
explored two more properties, namely, central moments and autocorrelation.

Unsupervised statistical clustering for industry classification

We have selected an unsupervised learning algorithm in the detriment to the industry
classifications as GICS2, NAICS3, Finviz4, etc., (which are independent of the pricing
data) because the synthetic data (GAN based data) is unknown to the aforementioned
classification schemes, therefore, we are required to use an automatic algorithm to
cluster the real and synthetic stock universe. In this context, We have applied the
KMeans clustering algorithm to cluster the entire universe of stock according to how
close the normalized returns are to the cross-sectional means of the parent clusters as
in [21]. Let N be the number of observations, d the trading days, and Ris are the daily
stock returns, where i = 1, . . . ,N, and s = 1, . . . ,d, we cluster the normalized returns Ris,
where R̂is =

Ris
σiui

, and ui =
σi
v . For all ui < 1,u(i)≡ 1, and Median(·) and MAD(·) are

cross-sectional. The standard deviation is computed with a loopback of 100 days, and
the clusterization is performed with a loopback of 1000 days, and a stride of 30.

Statistical labeling

Let Pis be the time series of stock prices, where i = 1, . . . ,N labels the stocks, and
s = 1, . . . ,d labels the trading dates, a time series from day s will be assigned with a
corresponding label, denoted Lis, according to the value of Pis compared to the median of
the cluster it belongs to. If Pis is greater or equal to the median, then Lis = 1, otherwise
Lis = 0.

2https://www.msci.com/gics
3https://www.census.gov/naics/
4https://finviz.com/
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Features extraction methods

Let w be the rolling window size, i.e., the number of consecutive observation per rolling
window, T the sample size, and suppose the number of increments between successive
rolling windows is 1 period, the time series is partitioned into N = T −w+1 subsamples.
For each day d, we use a rolling window size, w. The first rolling window contains
observations for period 1 through w, the second rolling window contains observations
for period 2 through w+ 1, and so on. This feature allows us to build a baseline by
estimating the prediction model using each rolling window subsamples of returns.

Denoising and dimensionality reduction

Because of the huge number of immediate market movements and trade noise, financial
data has a complicated structure of irregularities and roughness. The noise in financial
data generally shows strong tailedness, which means that the underlying time series data
has a lot of sharp breaks every once in a while. Ignoring these anomalies might lead to
erroneous data mining and statistical modeling results. As a result, In order to unveil
more meaningful representations, we propose to denoise and reduce the dimensionality
of the data using a stacked autoencoder structure. We set the hidden layer size to 16 and
the depth of the SAE to 4.

Prediction

Three variants of DNN have been implemented and tested, namely a multi-layer percep-
trons (MLP), a time-series 1-dimensional stacked separable convolution neural network
based on ResNet, and finally a bidirectional Long Short Term Memory (BiLSTM)
network.

Evaluation

We run our simulations over 17 years, using a two-part split protocol i) train/test on real
data, ii) train on real and augmented data and test on real data, using a split of 7 years of
data for training and 1 year of for testing.

Table 6.1 Prediction results expressed in accuracy with MLP for 50 epochs.

Epoch 2012-2020 2011- 2019 2010- 2018 2009- 2017 2007- 2016 2006- 2015 2005- 2014 2004- 2013 Avg. Acc
1 49.38% 48.92% 50.04% 50.01% 47.64% 49.32% 50.04% 49.93% 49.41%
2 49.34% 49.61% 50.04% 50.03% 49.41% 49.65% 49.45% 49.75% 49.66%
3 49.81% 50.04% 50.03% 49.89% 49.84% 49.91% 49.58% 50.00% 49.89%
... ... ... ... ... ... ... .... ... ...
50 50.25% 50.50% 50.28% 50.63% 50.31% 50.16% 50.51% 50.78% 50.43%

21



Table 6.2 Prediction results expressed in accuracy with ResNet1D for 50 epochs.

Epoch 2012-2020 2011- 2019 2010- 2018 2009- 2017 2007- 2016 2006- 2015 2005- 2014 2004- 2013 Avg. Acc
1 49.21% 49.43% 50.04% 50.38% 49.88% 50.20% 50.02% 50.11% 49.91%
2 49.19% 49.21% 50.01% 50.53% 50.15% 50.12% 50.02% 50.09% 49.92%
3 49.37% 49.48% 50.06% 50.51% 50.13% 50.15% 50.01% 50.19% 49.99%
... ... ... ... ... ... ... .... ... ...
50 51.84% 50.44% 50.56% 51.34% 51.14% 51.05% 51.10% 51.93% 51.18%

Table 6.3 Prediction results expressed in accuracy with LSTM for 50 epochs.

Epoch 2012-2020 2011- 2019 2010- 2018 2009- 2017 2007- 2016 2006- 2015 2005- 2014 2004- 2013 Avg. Acc
1 49.91% 50.14% 50.44% 50.15% 50.01% 49.74% 50.35% 49.44% 50.02%
2 49.64% 50.12% 50.41% 50.17% 50.04% 49.11% 50.31% 49.91% 49.96 %
3 50.05% 50.14% 50.39% 50.11% 49.85% 49.89% 50.31% 50.11% 50.11 %
... ... ... ... ... ... ... .... ... ...
50 51.16% 51.55% 51.81% 51.52% 52.02% 51.38% 51.62% 52.04% 51.64%

Table 6.4 Prediction results expressed in accuracy with LSTM train for 50 epochs on
synth + real data and tested on real data.

Epoch 2012-2020 2011- 2019 2010- 2018 2009- 2017 2007- 2016 2006- 2015 2005- 2014 2004- 2013 Avg. Acc
1 50.21% 49.51% 50.57% 51.01% 50.45% 50.14% 48.53% 51.56% 50.25%
2 50.19% 50.01% 50.61% 51.13% 50.45% 50.26% 48.24% 51.43% 50.29%
3 50.20% 49.95% 50.04% 50.47% 50.17% 50.11% 51.19% 50.49% 50.33%
... ... ... ... ... ... ... .... ... ...
50 51.51% 52.82% 52.81% 52.42% 52.85% 51.86% 52.49% 52.91% 52.46%

6.1.3 Results

We have used [23] as an external baseline. The manuscript tests 1.000.000 machine
learning models for directional forecasting using data from 1993 to 2008 to predict SPY
ETF direction and achieved an accuracy of 51.5%.

Train on real data–test on real data

Training with MLP, ResNet1D and BiLSTM we achieved an overall accuracy of 50.43%,
51.64% and 52.46%, respectively after 50 epochs.

Train on real + synthetic data–test on real data

We have retrained the BiLSTM network using a mix of real and synthetic data and tested
it strictly on real data achieving an an overall accuracy of 52.46% after 50 epochs. Using
the synthetic data, we increased the overall accuracy from 51.64% to up to 52.46%.
Furthermore, the results are significant, reporting the results to the external baseline.

6.1.4 Conclusions

This section presents a DNN framework for financial time series prediction of performing
and underperforming stocks. Three topologies, namely, a multi-layer perceptron, a 1D
variation of ResNet and an LSTM, were tested under two settings, trained and tested on
real data and trained on a mix of real and synthetic data and tested on real data. The
results show that synthetic data have a positive impact, improving the overall accuracy
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from 51.64% to up to 52.46%. These results are significant, reporting the results to the
literature baselines.

Chapter 7

Datasets and Evaluation
This chapter presents my contribution to the analysis, generation or publicly releasing
of a collection of datasets, namely: (i) Interestingness10k [6], for interestingness pre-
diction in multimedia data ; (ii) V SD96 [5], for violent scenes detection, and finally,
(iii) FaVCI2D [26] for face verification with challenging imposters and diversified
demographics. Furthermore, it provides insights, observations and recommendations
concerning the development of systems to predict the relevant representations for each
of the datasets.

7.1 Interestingness prediction

Dataset description

The Interestingness10k [6] dataset is a freely available dataset and a testbed for predicting
the interestingness of images and videos. This dataset was evaluated and validated
during the MediaEval Predicting Media Interestingness tasks in 2016 and 2017. My
contributions to this data set comprises of: i) analyzing the employed techniques and
their capabilities on the Interestingness10k data set, that allow for general trends to
be deduced with respect to the best performing systems ii), providing insights about
the capabilities of the newest deep neural networks, by analyzed the performance of
state-of-the-art architectures on the interestingness10k data set, iii) providing a series
of recommendations in respect to systems performances, iv) analyze and visualize how
algorithms interpret interestingness, v) developing an ensemble method based on the
runs submited to the MediaEval Predicting Media Interestingness and, vi) taking part in
the annotation process.

7.1.1 Problem formulation

According to the problem formulation, we identified 4 main approaches: more than 52%
of the approaches use classification, ranking for 31% (it is worth noting that ranking
approaches achieve overall better results in all the cases compared to the classification
(Mann-Whitney-U p < 0.005)), regression with 15% and hybrid with 2% of the total
number of systems.
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7.1.2 Methods analysis

According to the classification problem, we identified the following approaches: Support
Vector Machines accounting for 30%, Deep Neural Networks for 28%, Ranking for
13%, Regression for 12%, Hybrid for 6%, Neural Networks for 6%, Distance-based for
4% and Ensemble learning and Statistical, each one under 1%. Looking at their overall
performances, DNNs, NN and hybrid approaches were the best performers.

7.1.3 Overall method performance analysis

For the image data, approaches based on DNNs and shallow NN stand out, with average
mAP scores of 0.2460 and 0.2405, respectively. On the other hand, for the video data,
hybrid approaches and SVM-based approaches stand out as the best performers, with
average mAP scores of 0.1867 and 0.1822, respectively.

7.1.4 State-of-the-art deep neural networks

To account for current state-of-the-art deep neural network capabilities, we evaluate the
performance of three recent image and video classification architectures. We selected
for the image data the ResNeXt-101-32x48d , PNASNet-5 and ResNet-50 architectures,
augmented with best practices as presented in [39], and for the video data, the GSM-
InceptionV3 En3 , IR-CSN-152 , and R(2+1)-18 architectures. The analysis of the results
shows that these deep neural networks do not achieve the best results.

Table 7.3 Performance of state-of-the-art deep neural network architectures trained on
the Interestingness10k data.

Method
2016

(mAP)
2017

(mAP@10)

Image

bestME 0.2336 0.1385
bestSoA 0.2485 0.1560
FixResNet50 [39] 0.1906 0.1099
FixPNASNet-5 [39] 0.1981 0.1233
FixResNeXt-101-32x48d [39] 0.2273 0.1410

Video

bestME 0.1815 0.0827
bestSoA 0.1815 0.0930
IR-CSN-152 [12] 0.1577 0.0629
R(2+1)-18 [12] 0.1579 0.0644
GSM-InceptionV3-En3 [37] 0.1738 0.0821

To understand how deep learning algorithms interpret the visual samples and thus
how they attempt to predict interestingness, we computed the Grad-CAM and Guided
Backpropagation Grad-CAM maps. Some relevant examples are presented in Figure 7.2.
Results show that in many cases, the model focuses on the main subject, but predomi-
nantly more on elements adjacent to it, showing an inclination for detecting the context
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that surrounds the main subject. This is also true for human subjects, as the Grad-CAM
analysis shows network activation on human faces, but also many times around the face.
We theorize that this concentration of useful features on and around faces may represent
a positive influence on the final results, as faces convey emotions.

Fig. 7.2 Grad-CAM analysis of the network interpretation of visual information in the
case of images predicted as interesting. The top row presents the original samples, the
middle row presents the Grad-CAM output image describing “class-discriminative re-
gions”, and the bottom row presents the Guided Backpropagation Grad-CAM describing
the features that most contributed to the class decision [6].

7.1.5 Proposed MLP architecture

We provide a straightforward, yet efficient, late fusion technique based on a deep MLP
architecture. Our method is driven by the dense layer’s ability to uncover patterns and
connections among individual system outputs. We propose to model the bias learnt by
each inducer as well as the correlations between the biases in order to conduct retrieval
consistently and improve the aggregated system’s overall performance. After testing

2input

dense dense dense dense denseBN BN BN BN

50 50 50 50 50

Fig. 7.3 Overview of the proposed MLP-based fusion scheme: 1 input layer followed by
4 pairs of dense/batch normalization (BN) layers, 1 dense layer, and 1 single-layer linear
perceptron used for predicting the final interestingness score [6].

with various architectures and parameters, we arrived at following configuration: a deep
network composed of 10 layers with 5 dense layers activated by the ReLu function,
each followed by a batch normalization layer (bn). The network uses the interestingness
prediction scores of the inducers as input during the training phase to learn intricate joint
decisions. Figure 7.3 depicts the network’s topology.
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7.1.6 Evaluation

We utilize two split scenarios: i) 75% training and 25% testing (RSKF75), and (ii) 50%
training and 50% testing (RSKF50). Split samples are randomized, resulting in 100
partitions. The official metrics are calculated as averages of these splits.

7.1.7 Results and discussions

The results obtained with our proposed MLP-based system are analyzed and compared
to those obtained with the state-of-the-art systems from the MediaEval benchmark and
the literature. Overall, it is evident that the ensemble system outperform the individual
inducers.

7.1.8 Conclusions

One major finding is that, regardless of how strong a system is, ensembling many systems,
even with individual average performance, improves performance. We were able to
increase performance nearly in every case after testing with numerous fusion approaches,
including typical late fusion of system scores, boosting techniques that employ weak
learners, and a proposed, deep MLP-based system fusion. The proposed MLP system
improves image prediction by 105 percent over state-of-the-art results, increasing mAP
from 0.156 to 0.3202, and video prediction by 184 percent, increasing mAP from 0.093
to 0.2646.

7.2 Violence detection

The VSD96 data set [5] is a freely accessible dataset and a standardized evaluation
framework for detecting violent sequences in Cinematic and YouTube videos. This
dataset was validated at the MediaEval Violent Scenes Detection tasks from 2011 to
2015.

My main contributions to this dataset are as follows: (i) analyzing the employed
classification techniques and their capabilities on the VSD data set that allow for general
trends to be deduced with respect to the best performing systems, and (ii) an in-depth
analysis of the representative methods from the literature, trained and tested on the
VSD96 data that has not been submitted to the MediaEval Affective Impact of Movies,
Violent Scenes Detection campaign.

7.2.1 Dataset description

The VSD96 dataset consists of prominent Hollywood films that span a broad variety of
genres, topics, and levels of violence, ranging from extremely violent to films with no
violence at all.
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7.2.2 Methods analysis

We analyze the performance of more than 240 systems deployed for VSD.The following
clusters of methods formed: SVM accounting for 65%, Statistical approaches for 13%,
Neural Networks for 8%, Hybrid approaches for 8%, Discriminant Analysis for 2%,
Deep Neural Networks for 2%, Clustering for 1% and Unsupervised learning with less
than 1%. Looking at the overall performance, we noticed that Hybrid methods achieved
the best results - which could be because of the inherently multi-modal nature of videos.
These methods are followed by NNs, and DNNs.

7.2.3 Benckmarking of the state-of-the-art methods

To have a complete analysis of the existing systems’ performance, we provide an in-
depth analysis of the representative methods from the literature, trained and tested on
the VSD96 data. These were not submitted to the MediaEval benchmark, and most
importantly, they were developed without any time constraints. The complete results are
presented in the full manuscript.

7.2.4 Conclusions

We have provided an in-depth analysis of the crucial components of the VSD algorithms,
by reviewing the capabilities and the evolution of the existing systems with the objective
to offer a complete practitioner’s guide for this task. We reviewed 236 systems that
were submitted to MediaEval and selected 17 state-of-the-art systems from the literature
that were tested on VSD96 data, which constitute a strong baseline. We analyzed the
reliability of the annotations and system rankings, examined various aspects. e.g., overall
trends and outliers, the prediction methods employed, and the possibility of aggregating
the systems’ outputs into an ad-hoc super system to achieve even greater performance.

7.3 Face identification

Face Verification with Challenging Imposters and Diversified Demographics (FaVCI2D)1,
[26] is a novel face identification dataset composed of freely distributable resources
compliant with data protection regulations.

My main contributions to this dataset are as follows: (i) provide an analysis of state-
of-the-art architectures on existing face identification datasets to validate the obtained
results to the reported ones in the literature and the fact that the feature extractors to be
used for validating the FaVCI2D are configured correctly and their further comparison
is fair. and ii) provide state-of-the-art features extracted from the FaVCI2D data set.

1work published under revision
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7.3.1 Dataset description

FaVCI2D includes identities from 153 countries.The total number of unique IDs is
52,411, with 12,468 of them being used in genuine pairs. The total number of images in
the dataset is 64,879.

7.3.2 Results and discussions

We report the accuracy of feature extractors in various configurations of impostor pair
setting in Table 7.5. The similarity between imposter pairs’ IDs varies between 1 and
random, which is the standard verification condition. The size of the pool of imposters
is varies between 1,000 and 52,410, the total number of IDs in FaVCI2D. Globally,
the highest performance is achieved with insightface, whereas the worst performance
is achieved with facenet. The usage of challenging pairings considerably decreases
performance.

Model Similar = 1
Imposter pool size

Similar = 10
Imposter pool size

Similar = 100
Imposter pool size

Similar = random
Imposter pool size

1000 5000 10000 30000 52410 1000 5000 10000 30000 52410 1000 5000 10000 30000 52410 1000 5000 10000 30000 52410

insightface
97.37
± 0.03

96.76
± 0.04

96.56
± 0.03

96.07
± 0.03

95.75
± 0.0

98.04
± 0.02

97.58
± 0.05

97.34
± 0.02

96.89
± 0.05

96.64
± 0.0

98.62
± 0.02

98.22
± 0.01

98.05
± 0.03

97.77
± 0.05

97.50
± 0.0

98.81
± 0.02

98.78
± 0.01

98.82
± 0.01

98.81
± 0.03

98.82
± 0.0

ir152
93.62
± 0.03

92.10
± 0.07

91.36
± 0.05

90.08
± 0.04

89.48
± 0.0

95.52
± 0.05

94.11
± 0.08

93.43
± 0.15

92.33
± 0.05

91.84
± 0.0

97.17
± 0.02

96.13
± 0.07

95.54
± 0.02

94.64
± 0.05

94.00
± 0.0

97.65
± 0.03

97.66
± 0.03

97.65
± 0.03

97.63
± 0.04

97.64
± 0.0

seqface
91.73
± 0.15

89.46
± 0.15

88.47
± 0.16

86.65
± 0.17

85.61
± 0.0

94.58
± 0.08

92.37
± 0.11

91.31
± 0.14

89.76
± 0.16

88.99
± 0.0

97.18
± 0.06

95.55
± 0.02

94.56
± 0.10

93.04
± 0.10

92.28
± 0.0

98.04
± 0.03

98.03
± 0.04

98.00
± 0.04

97.94
± 0.02

98.06
± 0.0

vgg
91.52
± 0.15

89.01
± 0.13

87.79
± 0.08

86.00
± 0.11

85.28
± 0.0

94.44
± 0.10

92.13
± 0.07

90.89
± 0.17

89.19
± 0.10

88.29
± 0.0

97.27
± 0.09

95.33
± 0.08

94.44
± 0.07

92.85
± 0.07

91.92
± 0.0

98.37
± 0.04

98.35
± 0.06

98.31
± 0.05

98.32
± 0.06

98.42
± 0.0

facenet
89.74
± 0.14

86.90
± 0.12

85.44
± 0.13

83.48
± 0.08

82.61
± 0.00

93.51
± 0.09

90.39
± 0.04

89.13
± 0.11

87.07
± 0.12

86.06
± 0.0

97.13
± 0.05

94.79
± 0.08

93.52
± 0.12

91.28
± 0.07

90.11
± 0.00

98.37
± 0.07

98.37
± 0.06

98.36
± 0.06

98.36
± 0.06

98.39
± 0.0

Table 7.5 Verification accuracy with various models and setups. “Similar" indicates
the imposter identity’s position in the ranked list of similar identities in relation to
the reference identity in each impostor pair. Lower values indicatea more difficult
verification setup. The“imposter pool size" specifies the number of distinct identities
from which an imposter could be selected. Higher values indicate a more challenging
verification setup. Each configuration was run five times and the average accuracy and
associated standard deviation are reported.

7.3.3 Benckmarking of the state-of-the-art methods

The following models were used in experiments: insightface [9], based on ResNet-150,
trained on MS-Celeb1M dataset using ArcFace loss; ir152 [45], based on ResNet-152,
trained on MS-Celeb1M dataset using Focal loss; seqface [15], based on ResNet-27
trained on MS-Celeb1M using the L2-SphereFace loss and fine-tuned on Celeb-Seq
dataset; vgg [1], based on SE-ResNet-50 trained on MS-Celeb1M dataset and fine-tuned
on VGGFace2 dataset using Softmax loss; facenet [27], based on Inception ResNet,
trained on VGGFace2 dataset using SoftMax loss.

In Table 7.6, In the full manuscript, we present the results obtained with the five
models on two consacrated datasets. LFW [24] and YTF [41]. When available, the
original model performance is reported in parenthesis. The results reproduced here are
coherent with the original ones. This finding validates the fact that the feature extractors
are configured correctly and their further comparison is fair.
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Model Training Data LFW YTF
insightface MS-Celeb1M-ArcFace 99.87 (99.80+) 97.94
ir152 MS-Celeb1M 99.76 (99.80) 97.50
seqface MS-Celeb1M + Celeb-Seq 99.80 (99.80) 98.00 (98.00)
vgg MS-Celeb1M + VGGFace2 99.40 96.78
pfe MS-Celeb-1M-ArcFace 99.82 97.36
dream MS-Celeb-1M 97.71 95.01
facenet VGGFace2 99.55 95.12

Table 7.6 Accuracy (%) of tested methods on LFW and YTF.

7.3.4 Conclusions

With the recent General Data Protection Regulation (GDPR) directive in European
Union (EU) regarding data protection, establishing a new person identification dataset
is extremely laborious. There have been many questions raised by the research com-
munities whether they can build large datasets such as the public MegaFace [22] or the
private DeepFace or FaceNet, owned by Facebook, and Google, respectively without
any infringement of the aforementioned directive. While recent performance reports
give the impression that the task is nearly complete, our studies reveal that existing
evaluation datasets were constructed utilizing two oversimplifying design decisions. One
identified cause is that the traditional identity selection used to construct imposter pairs
is insufficiently difficult since, in fact, verification is required to discover challenging
imposters.

Chapter 8

General conclusions and perspectives

8.1 Conclusions

This chapter summarizes my personal contributions during my doctoral research program
to the field of computer vision, machine learning, medical, and financial, to name a few,
using deep learning-based methods.

Part I presents the domain of the thesis and the motivation behind this work, fol-
lowed by a literature review that addresses the methods that underpin deep learning
implementations. Part II convers all of my personal contributions. Concretely, Chap-
ter 3 presents my contribution to the medical domain. Sections 3.1– 3.3 describe a
series of approaches for tuberculosis multidrug resistance detection, tuberculosis type
classification, automatic image captioning and scene understanding in medical images,
and lipreading. Chapter 4 presents my contributions to the surveillance domain. Sec-
tions 4.1– 4.2 describe approaches for joint person detection and re-identification and
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person search, respectively. Chapter 5 presents my contributions to ensemble learning.
Section 5.1 include a novel deep ensembling architecture designed to discover patterns
and correlations between the decisions of individual classifiers. Chapter 6 presents my
contributions to the fintech domain. Section 6.1 presents a method for financial time
series generation and prediction of performing and underperforming stocks. Finally,
Chapter 7 presents my contribution to the analysis, generation or publicly releasing
of a collection of datasets. Section 7.1 presents the Interestingness10k [6] dataset for
interestingness prediction in multimedia data. Section 7.2 presents the V SD96 [5] dataset
for violent scenes detection, and Section 7.3 presents the FaVCI2D [26] dataset for face
verification with challenging imposters and diversified demographics. Furthermore, they
provide insights, observations and recommendations concerning the development of
systems to predict the relevant representations for each of the datasets.

8.2 Contributions

• [C3, J1] present a framework for financial time series generation and prediction
of performing and underperforming stocks. My main contribution comprises of
developing the prediction algorithm, including a clustering approach for the stock
universe clusterisation, a deep stacked autoencoder, and a deep neural network for
predicting performers and underperformers.

• [J3] presents a comprehensive study of the Interestingness10k data set, with the
goal of predicting image and video interestingness. To the best of my knowledge,
this is the most comprehensive literature survey on the prediction of media interest-
ingness at publishing time. My contributions comprise of analyzing the employed
machine learning techniques and their capabilities on the data set that allows
for general trends to be deduced with respect to the best-performing systems,
providing insights regarding the capabilities of the newest deep neural networks
by analyzing the performance of state-of-the-art architectures on the data set,
visualizing and analyzing how algorithms interpret interestingness, providing a
series of recommendations in respect to systems performances, developing an
ensemble method based on the runs submitted to the MediaEval Predicting Media
Interestingness competition, and taking part in the annotation process of the data
set.

• [C1] presents a new face verification data set with challenging imposters and
diversified demographics called FaVCI2D. My contributions comprises of pro-
viding an analysis of state-of-the-art architectures on existing face identification
datasets to validate the obtained results to the reported ones in the literature and
the fact that the feature extractors to be used for validating the FaVCI2D are con-
figured correctly and their further comparison is fair, and providing state-of-the-art
features extracted from the FaVCI2D data set.
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• [C7, C5, B1] present a novel deep ensembling architecture designed to discover
patterns and correlations between the decisions of individual classifiers. My main
contributions comprise the development of two deep neural networks tailored
for ensemble learning and defining a set of rules to build network architectures
in a progressive manner. Validation is conducted on various classification and
regression tasks, namely the Arousal and Valence detection subtasks of the Medi-
aEval 2018 Emotional Impact of Movies task (two-class regression), MediaEval
2017 image and video subtasks from the Predicting Media Interestingness task
(regression and cassification), the 2015 MediaEval Violent Scenes Detection task
(binary classification), Fear detection subtask of the MediaEval 2018 Emotional
Impact of Movies task (binary classification) and ImageCLEF 2019 Medical Con-
cept Detection task (multi-label classification). At publishing time, these methods
outperformed literature state-of-the-art with a great margin on all the data sets.

• [B3,B2, B5 B4, C2, C9] present a description of a series of public benchmarking
competitions for which I was a member of the organizing team.

• [C4] propose a novel data set for lip reading for Romanian language. My con-
tribution comprises of i) analyzing and implementing good practices for training
deep neural networks and tailored data preprocessing for visual lip reading, and
ii) developed visual lip reading models for heterogeneous hardware using Graph
Lowering techniques. To the best of our knowledge, we were the first research
group to release a lip reading dataset and models for Romanian language.

• [J2] presents a comprehensive study of the VSD96 data set with the goal of
detecting violent video content. To the best of my knowledge, this is the most
exhaustive literature study on the prediction of violent events from both subjective
and objective perspectives at the time of publication, addressing and analyzing
over 250 machine learning techniques. My main contributions to this data set
comprise analyzing the employed classification techniques and their capabilities
on the VSD data set that allow for general trends to be deduced with respect
to the best-performing systems, and an in-depth analysis of the representative
methods from the literature, trained and tested on theVSD96 data that has not been
submitted to the MediaEval Affective Impact of Movies–Violent Scenes Detection
benchmarking campaign with the goal of assessing the advances of the domain
and provide the usefully lessons for the future.

• In [C6], I proposed a deep neural network-based unified architecture for person
search, with attention mechanisms driving the detection phase. At the time of
publication, attention techniques had not been implemented at the detection stage
in an end-to-end fashion for person search, to the best of our knowledge.

• In [C11], I proposed a joint person detection and re-identification deep neural
network in video streams. At the time of publication, the results outperformed the
state-of-the-art approaches on the tested data set.
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• In [C13], I proposed a flexible deep CNN structure that takes an arbitrary number
of hypotheses as input for training multilabel image categorization. Results are
validated in the ImageCLEF 2017Captiom task.

• In [C12], I proposed two completely automated tuberculosis categorization tech-
niques and one automatic predictor for estimating the likelihood of TB patients
developing multi-drug resistant TB, all base on deep neural networks. Furthermore,
I have proposed a transformation approach for 3D CT images that allows applying
transfer learning from other domains using deep neural networks. Results are
validated in the ImageCLEF 2017 tuberculosis tasks.
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Participation in the ImageCLEF 2017 Caption Task.

C14: A. Toma, L.-D. Ştefan, and B. Ionescu. UPB HES SO@ PlantCLEF 2017:
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European network of AI excellence centres (budget 12M Eur).

R2: 2020–2022: researcher, project SMARTRetail. “Enhancing and Improving Cus-
tomer Experience and Services in Supermarkets via SMART Artificial Intelli-
gence Powered Systems”, owner Softrust Vision Analytics, partner Polytechnic
University of Bucharest, funded by UEFISCDI, Industry Transfer Axis, grant
PN-III-P2-2.1-PTE-2019-0055 (budget 340k Eur).

R3: 2020–2022: researcher, project GRAVI. “Virtual Guardian: Artificial Intelligence
Powered Multi-Sensor System for Automatic Securing of Areas of Interest”, owner
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Softrust Vision Analytics, partner Polytechnic University of Bucharest, funded by
UEFISCDI, Industry Transfer Axis, grant PN-III-P2-2.1-PTE-2019-0570 (budget
350k Eur).

R4: 2020 March–2020 October: researcher, project Keysight 1. “Machine Learning
Techniques for Generating Network Traffic Data”, owner Polytechnic University
of Bucharest, CAMPUS Research Institute, beneficiary Keysight Technologies
Romania (budget 59k Eur).

R5: 2020 April–2020 July: researcher, project Hana 2. “Financial Data Augmentation
and Forecasting Using Advanced AI Techniques”, owner “Polytechnic” Research,
Development and Innovation Institute, beneficiary Hana Institute of Technology,
Republic of Korea (budget private).

R6: 2019 May–2019 December: researcher, project NXP 1. “RISC V-based Hardware-
Software System for Machine Learning Applications”, owner Polytechnic Univer-
sity of Bucharest, CAMPUS Research Institute, beneficiary NXP Semiconductors
Romania (budget 136k Eur).

R7: 2017–2020: researcher, project SPIA-VA. “Technologies and Innovative Video
Systems for Person Re-Identification and Analysis of Dissimulated Behavior”,
owner Polytechnic University of Bucharest, partners UTI Grup, Romanian Ministry
of National Defence — Military Equipment and Technologies Research Agency,
public beneficiary Protection and Guard Service, funded by UEFISCDI, Solutions
Axis, grant 2SOL/2017 (budget 2.2M Eur).

R8: 2017–2018: researcher, project SPOTTER. “Real-time IP Camera-based Intelli-
gent Video Surveillance Security System with DROP Retrieval”, owner Polytech-
nic University of Bucharest, partner UTI Grup, funded by UEFISCDI, PED Axis,
grant 30PED/2017 (budget 140k Eur).

R9: 2016–2018: researcher, project Erasmus+ CBHE, UMETECH. “University &
Media Technology for Cultural Heritage”, owner University of Florence, Italy,
partner Polytechnic University of Bucharest (budget 900k Eur).

8.4 Future perspectives

At the moment, the majority of a deep learning practitioners’ work involves manip-
ulating data with Python scripts and then meticulously tweaking the topology and
hyper-parameters of a deep network to obtain a functional model. An adventurous
researcher may recourse to an off-the-shelve state-of-the-art model. Unfortunately, this
is not the ideal configuration. Supervised deep learning can assist in this area. Solutions
that handle most of the model parametric tweaking may become a powerful tool, as we
demonstrated in our ensemble learning experiments. A more ambitious perspective seeks
to discover a suitable architecture from scratch through reinforcement learning or genetic
algorithms. Another practical approach for automatization is to learn model architecture
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in conjunction with model weights. Because training a new model from scratch each time
we experiment with a slightly different architecture is highly inefficient. An effective
automatic system would evolve architectures concurrently with tuning model features
via back-propagation on training data, eliminating all computational redundancy.
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[34] Ştefan, L.-D., Constantin, M. G., and Ionescu, B. (2020b). System fusion with
deep ensembles. In Proceedings of the 2020 International Conference on Multimedia
Retrieval, pages 256–260.

[35] Stefan, L.-D., Ionescu, B., and Müller, H. (2017b). Generating captions for medical
images with a deep learning multi-hypothesis approach: Medgift–upb participation in
the imageclef 2017 caption task.

[36] Ştefan, L.-D., Mironică, I., Mitrea, C. A., and Ionescu, B. (2017). End to end very
deep person re-identification. In 2017 International Symposium on Signals, Circuits
and Systems (ISSCS), pages 1–4. IEEE.

[37] Sudhakaran, S., Escalera, S., and Lanz, O. (2020). Gate-shift networks for video
action recognition. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

[38] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9.

[39] Touvron, H., Vedaldi, A., Douze, M., and Jégou, H. (2019). Fixing the train-test
resolution discrepancy. In Advances in Neural Information Processing Systems, pages
8250–8260.

[40] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008.

[41] Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained
videos with matched background similarity. In CVPR 2011, pages 529–534. IEEE.

[42] Xiao, T., Li, S., Wang, B., Lin, L., and Wang, X. (2017). Joint detection and identi-
fication feature learning for person search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3415–3424.

[43] Yang, S., Zhang, Y., Feng, D., Yang, M., Wang, C., Xiao, J., Long, K., Shan, S.,
and Chen, X. (2018). Lrw-1000: A naturally-distributed large-scale benchmark for
lip reading in the wild. 2019 14th IEEE International Conference on Automatic Face
& Gesture Recognition, pages 1–8.

[44] Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment
using multitask cascaded convolutional networks. IEEE Signal Processing Letters,
23(10):1499–1503.

[45] Zhao, J., Cheng, Y., Xu, Y., Xiong, L., Li, J., Zhao, F., Jayashree, K., Pranata, S.,
Shen, S., Xing, J., et al. (2018). Towards pose invariant face recognition in the wild.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2207–2216.

[46] Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. (2015). Scalable
person re-identification: A benchmark. In Proceedings of the IEEE international
conference on computer vision, pages 1116–1124.

[47] Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., and Tian, Q. (2017).
Person re-identification in the wild. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1367–1376.

39


	Table of contents
	I Introduction and Theoretical Background
	1 Introduction
	1.1 Domain of the thesis
	1.2 Motivation of the thesis
	1.3 Content of the thesis

	2 Deep Neural Networks
	2.1 Convolutional Neural Networks
	2.1.1 CNN Building Blocks
	2.1.2 VGG
	2.1.3 GoogleNet
	2.1.4 ResNet

	2.2 Recurrent Neural Networks
	2.2.1 Long Short-Term Memory

	2.3 Attention Mechanisms
	2.4 Good Practices for Deep Learning
	2.4.1 Data augmentation
	2.4.2 Hyper-parameter tuning
	2.4.3 Transfer learning
	2.4.4 Fine-tunning

	2.5 Current Limitations of Deep Learning
	2.6 Conclusions


	II Personal Contributions
	3 Medical Applications
	3.1 Deep Learning for Finding and Classifying Tuberculosis Types for a Targeted Treatment
	3.1.1 Introduction
	3.1.2 Proposed approach
	3.1.3 Results
	3.1.4 Conclusions

	3.2 Deep Learning for Multi–Hypothesis Captions Prediction in Medical Images
	3.2.1 Introduction
	3.2.2 Proposed approach
	3.2.3 Results
	3.2.4 Conclusions

	3.3 Deep Learning for Lip Reading: Toward Language - independent Lip Reading
	3.3.1 Introduction
	3.3.2 Proposed approach
	3.3.3 Results
	3.3.4 Conclusions


	4 Video Surveillance
	4.1 Joint Person Detection and Re-identification
	4.1.1 Introduction
	4.1.2 Proposed approach
	4.1.3 Results
	4.1.4 Conclusion

	4.2 Person Search
	4.2.1 Introduction
	4.2.2 Proposed approach
	4.2.3 Results
	4.2.4 Conclusions


	5 Ensemble Learning
	5.1 Deep Learning for Ensemble Systems
	5.1.1 Introduction
	5.1.2 Proposed approach
	5.1.3 Predicting visual interestingness
	5.1.4 Predicting violent scenes
	5.1.5 Predicting emotional impact of movies
	5.1.6 Concept detection
	5.1.7 Ablation Study
	5.1.8 Conclusions


	6 Fintech
	6.1 Deep Learning for Financial Time Series Prediction
	6.1.1 Introduction
	6.1.2 Proposed approach
	6.1.3 Results
	6.1.4 Conclusions


	7 Datasets and Evaluation
	7.1 Interestingness prediction
	7.1.1 Problem formulation
	7.1.2 Methods analysis
	7.1.3 Overall method performance analysis
	7.1.4 State-of-the-art deep neural networks
	7.1.5 Proposed MLP architecture
	7.1.6 Evaluation
	7.1.7 Results and discussions
	7.1.8 Conclusions

	7.2 Violence detection
	7.2.1 Dataset description
	7.2.2 Methods analysis
	7.2.3 Benckmarking of the state-of-the-art methods
	7.2.4 Conclusions

	7.3 Face identification
	7.3.1 Dataset description
	7.3.2 Results and discussions
	7.3.3 Benckmarking of the state-of-the-art methods
	7.3.4 Conclusions


	8 General conclusions and perspectives
	8.1 Conclusions
	8.2 Contributions
	8.3 Publications
	8.4 Future perspectives

	References


