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Chapter 1 
 

 

Introduction 
 

 

Within this work, existing machine learning (ML) and deep learning (DL) models are 

extended, and novel methods and techniques are proposed, developed, and validated 

within the context of speech signal analysis and processing for the automatic 

recognition of paralinguistic elements, with applications in forensic speech. 

 

1.1.  An overview of paralinguistic elements 

1.1.  and recognition tasks 
 

The concept of paralinguistics was first formulated by American linguist George Trager, 

and refers to the meta-information present in spoken communication, the nuances 

conveyed beyond the lexical / semantic content in regard to affective dimensions 

[Bac95, Bac99] or other psychological manifestations [Laz99, Vil12]. 

 The most important fundamental paralinguistic elements and their associated 

recognition tasks for speech signals are defined as follows [Laz99, Mat09]: 

• stress = a prolonged state of psychological and physiological arousal that 

negatively affects a subject’s state of mind, mood, etc. 

⟹ speech under stress detection (SSD); 

• deception = behavior including actions such as withholding information, 

providing incomplete or false information (i.e., lying), etc. for the purpose 

of the subject’s individual gain, usually at the expense of others 

⟹ deceptive speech detection (DSD); 

• emotions = higher-level, transient neurophysiological responses to stimuli, 

determining coordinated physical and mental responses for appraisal of the 

stimuli and preparation for the subject to take subsequent actions 

⟹ speech emotion recognition (SER). 
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 The main difficulties in this context arise from the subjective nature of the 

paralinguistic content evaluation, since the expressions are highly personal, and likely 

generated from a frame of reference to which that of the evaluator is hard to calibrate. 

For automatic recognition, however, the system must be trained not only using high-

quality paralinguistic content annotations, but also high-quality paralinguistic content 

itself. In other words, the recorded spoken interactions should be natural, realistic, 

spontaneous, unguided, unrestricted, and as varied as possible. 

 This is, of course, seldom the case due to practical reasons. Developing a 

paralinguistic dataset is a considerably difficult task by itself, and ensuring that all the 

previously listed criteria are respected is often simply not an option, either due to data 

unavailability or to the prohibitively long time required to construct such a dataset. 

Thus, most often, actors are hired to record spoken interactions in which they mimic 

affective expressions and other paralinguistic elements to the best of their ability. 

However, this simulated nature, combined with the fact that the speech content is 

usually predetermined and rehearsed, leads to poor generalizability and reduced 

robustness for the trained automatic recognition systems, since the task-related quality 

of the available data has little in common with the instances later encountered in 

realistic scenarios, “in the wild”. 

 

1.2.  Paralinguistic applications in forensic speech 
 

One field to which the automatic recognition of paralinguistic content from speech lends 

itself directly is forensic speech analysis and, more generally, forensic and law 

enforcement operations. Due to the nature of these domains, the main focus should be 

on detecting negative emotions, manifestations of high stress levels, and especially 

engagement in deceptive behavior. For various possible applications, determining 

higher-level affective and behavioral patterns is also highly relevant, especially when 

concerned with complex and long-term actions undertaken by the subjects in question. 

 A list of a few key application examples is provided in the following: 

• law enforcement active investigations in the form of conducting police 

interviews, questionings, or taking testimonies from persons of interest in 

criminal cases, suspects, witnesses, victims; 

• criminal and terrorist activity anticipation and prevention through 

surveillance and recognition of suspicious long-term affective patterns; 

• suspicious behavior monitoring at checkpoints, airports, tourist attractions, 

crowded areas, and other sensitive areas of interest; 

• lie detection systems employing only on the audio modality; etc. 

 It must be emphasized that, in all of these examples and in any forensic or law 

enforcement applications, the position advocated for in this thesis is not complete 

automation of such tasks, removing the human element. One key ethical and security-

related aspect is for such tasks to always have final decisions and actions taken solely 

by human agents, with the artificial intelligence (AI) system involvement taking only 

the form of non-definitive alarms, suggestions, and recommendations. 
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 It is clear from the research conducted so far in the field that ML/DL models for 

SSD, DSD, and SER tasks that better performance is obtained when working with 

multimodal data (i.e., audio-video recordings, physiological data, etc.). Despite this, 

focusing on the research and development of such models using only speech data is of 

great interest for its advantages: the possibility to record speech data inconspicuously, 

reducing the subject’s awareness and their chance to manipulate the data, or to approach 

situations where only speech data is available (e.g., telephone calls). 

 

1.3.  An interdisciplinary research area: 

1.3.  scope and objectives 
 

The scope of this doctorate can be understood as: 

• Developing novel and high-performance ML/DL models and techniques for 

automatic speech under stress detection (SSD), deceptive speech detection 

(DSD), and speech emotion recognition (SER), focusing on negative and 

high-intensity affective and deceptive manifestations. 

• Developing extensive and robust sets of speech signal features (i.e., key 

speech parameters and mathematical and/or physical measures) relevant for 

automatic recognition of paralinguistic elements from the speech content. 

• Developing novel, high-quality, realistic datasets for paralinguistic element 

recognition, overcoming the limitations and disadvantages present for other 

available datasets, and allowing public access to the developed datasets. 

• Determining long-term affective patterns and behaviors relevant for forensic 

and law enforcement applications, and providing affective models for their 

study in relation to suspicious behavior monitoring. 

 

1.4.  Thesis structure 
 

The structure of this thesis includes eight chapters that comprise the following content: 

 Chapter 1 serves as an introduction into the general concepts and particular 

aspects of paralinguistic elements and the corresponding (automatic) recognition tasks, 

and how they are applicable to the field of forensic speech. The chapter also defines the 

scope and the objectives of the thesis and outlines its structure. 

 Chapter 2 is a comprehensive summary of the main theoretical knowledge 

required in the development of this work, concerning the fields of speech analysis and 

processing and machine learning and deep learning. The chapter presents an extensive 

set of algorithmically extracted (hand-crafted) features used successfully for the 

paralinguistic tasks that are part of the scope of this thesis, the ML/DL models 

employed in developing the systems, and the training and testing methodologies 

approached in order to ensure proper performance validation for the proposed systems. 

 Chapter 3 debuts with a more detailed discussion concerning the different 

paralinguistic elements that are the focus of this work (psychological stress, emotions, 
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and deception) and how they are related to each other. The chapter then covers the first 

task, detecting psychological stress from speech, first by describing the related work 

published in literature and the current state of the art, followed by presenting the 

proposed system architectures, and the experimental setup, including the datasets 

employed, the methodology, the results, and their discussion. 

 Chapter 4 is the first of two chapters related to the second paralinguistic task 

approached in this work, i.e., deceptive speech detection. The chapter begins with a 

description of the challenges and requirements for the development of high-quality and 

reliable datasets for paralinguistic tasks, especially for deception detection, as well as an 

overview of the available public datasets for the aforementioned task. The second half 

of the chapter describes in detail the novel Romanian Deva Criminal Investigation 

Audio Recordings (RODeCAR) dataset, developed as part of the doctorate, arguing for 

the improvements it provides over other similar corpora. 

 Chapter 5 expands upon the subject of deceptive speech detection. The chapter 

follows the same structure as Chapter 3, comprising an overview of other approaches 

publicly reported and the current state of the art, the proposed system architectures, and 

the experimental setup and results obtained, including the first published results for the 

RODeCAR dataset introduced in Chapter 4. The systems developed in this work for 

deceptive speech detection include a voice activity detection component, which is also 

described appropriately throughout the chapter in terms of providing a review of 

previously published literature concerning this subtask, as well as the subsystem 

architecture and experimental validation. 

 Chapter 6 presents the main body of work done on speech emotion recognition 

over the course of the doctorate, covering three types of systems: direct approaches, 

using algorithmically extracted features and classifiers based on neural networks; 

multidomain approaches that attempt to use dimensional modeling to establish a 

mapping between the continuous affect space and emotions as discrete categories, 

training the system to simultaneously solve both a classification and a regression 

problem; and transfer learning approaches, for which large, high performing neural 

network models designed for visual recognition of objects in images are repurposed and 

retrained in order to recognize distinctive patterns in speech spectrograms. The chapter 

follows the same structure as Chapter 3 and Chapter 5: related work, proposed system 

architectures, and experimental setup, results, and discussions. 

 Chapter 7 is a follow-up to the previous chapter, providing the theoretical 

background and experimental validation for the problem of speech emotion remanence, 

i.e., the twin hypotheses that, as an emotionally charged event approaches in time, 

subjects will exhibit stronger negative emotions that will be present (and detectable) in 

their speech for longer time intervals after being triggered. 

 Chapter 8 is reserved for conclusions, offering a summary of the developments 

followed and the best obtained results over the course of this work, as well as discussing 

the candidate’s original contributions, list of articles and papers published as part of the 

doctorate, and the perspectives for further developments in the machine learning, deep 

learning, and speech processing fields, with particular focus on automatic recognition of 

paralinguistic elements for law enforcement and forensic applications. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 2 
 

 

Theoretical background: speech 

signal analysis, machine learning 
 

 

This chapter summarizes and offers insights into the theoretical knowledge required for 

the development of the work presented in this thesis. 

 

2.1.  An extensive hand-crafted feature set 

2.1.  for speech processing 
 

The audio input goes through the preprocessing steps (resampling, normalization, 

filtering), with the unframed and framed data subsequently being designated the audio 

vector and the audio frame vector. In this work, the framing scheme involved using 

Hamming windows of 25 ms duration with a 15 ms (60%) overlap. 

 The features extracted in the next stage form a set that extends the ComParE set 

[Sch14] by including other features proven to be relevant for paralinguistic tasks both in 

recent literature and in preliminary experiments performed in this work. The audio 

vector is segmented, and the segment-wise features (SWFs) are extracted. The other 

features are extracted frame-wise from the audio frame vector and consist of: (i) time-

domain features (TDFs); (ii) frequency-domain features (FDFs); (iii) the first 13 

Mel-frequency cepstral coefficients (MFCCs); and (iv) modulation-based features 

(MBFs), proposed in [Cha14]. Delta and delta-delta coefficients are computed for the 

MFCCs, the TDFs, and the FDFs, as well as for some of the MBFs. Together with the 

SWFs, these represent the time-step features (TSFs), on which the F(·) set of functionals 

(mean and standard deviation) is applied, resulting in the utterance-wise features 

(UWFs). Finally, the N(·) function, z-score normalization, is applied per speaker. The 

obtained normalized feature vector (FV) has a total size of 2,260 and is used in its 
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entirety or through various subsets as the input data for many of the systems developed 

in this work. The proposed preprocessing and feature extraction stages described 

previously are illustrated together in Figure 2.2. 

 The SWFs (pitch, HNR, local jitter, local shimmer) are extracted using the Python 

implementations of the Yet Another Algorithm for Pitch Tracking (YAAPT) algorithm 

and of Praat. The TDFs considered are the RMS energy, offering a measure of the 

intensity of each frame of the speech signal, and the zero-crossing rate (ZCR), serving 

as a measure of the high-frequency noise-like content of the signal, with higher values 

typically corresponding to unvoiced regions of speech. The FDFs considered are: the 

low-frequency energy (within the 250 – 650 Hz subband), the high-frequency energy 

(within the 1 – 4 kHz subband), and, for several Mel-spaced frequency subbands, the 

spectral centroids, the spectral spread, the spectral skewness, the spectral kurtosis, the 

spectral entropy, the spectral flux, the spectral slope, and the spectral roll-off points 

(computed for the 25%, 50%, 75%, and 90% thresholds). The MBFs are obtained by 

treating the speech signal as a series of amplitude and frequency micro-modulations 

(AM-FM) and computing features based on the estimated instantaneous amplitude and 

frequency at each time step by demodulating the signal. The MBFs capture non-linear, 

time-varying speech production phenomena, including the fine structure of speech 

formants. The MFCCs are some of the effective and often used features for speech 

analysis and processing applications. They can be interpreted as a compressed model of 

the vocal tract, i.e., offering a description of the quefrency response of the vocal tract in 

the source-filter model of speech. The delta coefficients, Δ(·) of a feature F are 

measures of its local variation, from index to index (e.g., across frames). Thus, they can 

be interpreted as a description of its first-order (time) variation. By applying the Δ 

function to the delta coefficients, the delta-delta coefficients may be computed. 

 

2.2.  Machine learning and deep learning 

2.2.  models employed 
 

A machine learning (ML) system can be viewed as a self-adjusting system in which the 

operations required to relate the input and output data are not determined and structured 

by a human agent, but are the result of automatic convergence to a numerically optimal 

solution, i.e., for an ML system, developers use inputs and outputs to determine “rules”. 

 A K-means model (KMM), or the K-means clustering algorithm [Bis06], is one of 

the simplest, yet effective clustering algorithms, and can be interpreted as a particular 

case of the expectation-maximization (EM; or Baum-Welch) algorithm. The idea behind 

Gaussian mixture models (GMMs) is to model the underlying probability distribution of 

the data as a superposition (mixture) of normal (Gaussian) distributions [Bis06]. 

 For the SVM model, assuming the input data is linearly separable, i.e., there exists 

a hyperplane that perfectly separates the instances belonging to each of two classes, the 

hyperplane is chosen so that the margin (the minimum distance between the decision 

boundary and the points closest to the decision boundary, i.e., the support vectors) is 

maximized. The initial model was constructed to include a non-linear transformation 
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Figure 2.2 – Detailed block diagram of the preprocessing and feature extraction stages. 
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function, Φ(·), applied to the feature vector space, because the input data is often not 

linearly separable in the original feature space, but might be in a higher-dimensional 

space, the mapping between the two being given by Φ(·). Directly computing Φ(·) is 

prohibitively expensive. Instead, a kernel function allows the indirect usage of Φ(·) as a 

simple dot product in the original feature vector space, reducing the computational 

complexity considerably. For non-binary, K-class problems, multiple SVMs are used in 

ensemble via: the one-vs.-rest (OvR) strategy, which involves training K SVMs 

separately, one for each class, by first grouping together all instances that are not part of 

the current “positive” class into a “negative” class; or the one-vs.-one (OvO) strategy, 

by training K·(K–1)/2 classifiers separately, one for each class combination. 

 The basic building block of a fully-connected neural network (FCNN) is the 

neuron, which models the equivalent biological cell found in the human nervous 

system. The artificial neuron takes as input variables arriving from previous neurons 

with associated weights, the total stimulus (the activation), representing the linear 

combination of the inputs, to which a non-linear activation function is applied. A single 

neuron would not offer relevant processing power, so several are organized together 

into layers. The main heuristic approach that has proven to be increasingly feasible and 

high-performing in the contemporary development of the field is to trade “breadth” for 

“depth”: instead of attempting to extract information through a single transformation 

between the input data feature space and the output data, doing it in several stages, i.e., 

using (a large number of) hidden layers, with each one ideally obtaining a higher-level 

abstraction of the input data by stacked transformations. 

 Convolutional neural networks (CNNs) are the backbone of modern deep learning 

(DL) AI systems. They can be seen as a derivative of FCNNs based on a few key 

principles, including locality, invariance, and deep abstraction [Bis06, Goo16]. These 

principles translate into not having all the neurons in a layer connected to each of the 

neurons in the consecutive layer, and each layer creating a new representation of the 

input data, called a feature map. Ideally, every subsequent layer would extract feature 

maps that offer a higher and higher level of abstraction for the data. 

 

2.3.  Training and testing methodologies 
 

 The fundamental methodology involves splitting the data into several subsets 

[Has06]. Ideally, this involves three subsets: one for training, one for development 

validation (dev / val), and one for general evaluation (final testing; eval / test). The total 

size of the dataset should be as large as possible. But many available datasets are 

relatively small, and the alternative is to apply cross-validation, using repeated two-way 

training-validation splits. A number of advanced training techniques have been adopted 

for the systems developed in this work to improve the training process and to increase 

the models’ performance: regularization, dropout, batch normalization, and others. 

 For regression problems, apart from the value of the loss function itself, the 

performance metrics are the correlation coefficient, ρ, defined in (2.91), where σy and σŷ 

are the standard deviations of the target values and of the model output values, and Kyŷ 
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represents the covariance between the two vectors, and the concordance correlation 

coefficient, ρc, defined in (2.92), where μy, μŷ , σy
2, and σŷ

2 are the means and variances 

of the target values and of the model output values. For classification tasks, considering 

N instances belonging to K classes, with Nk the number of instances in each class, let Hk 

represent the number of correct predictions made by the model for class k, given by 

(2.98a), where the function h(k)(·, ·) is defined in (2.98b); and Fk the number of incorrect 

membership predictions made for class k, given by (2.99a), where the function f(k)(·, ·) 

is defined in (2.99b). The precision (P), recall (R), unweighted and weighted accuracy 

(UA / WA) metrics are then defined according to (2.100) – (2.103). 
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2.4.  Chapter conclusions 
 

In this chapter, a summary of the main theoretical knowledge employed during the 

development of this work was presented, including an extensive set of algorithmically 

extracted features, ML/DL models, and fundamental and advanced training and testing 

methodologies, techniques, and metrics used to ensure proper system performance. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 3 
 

 

Speech under stress detection 
 

 

This chapter covers the task of detecting states of psychological stress from a subject’s 

speech, also called speech under stress detection (SSD). Parts of the content herein were 

published as a conference paper by the candidate [Mih21b]. 

 

3.1.  Background and related work 
 

It is important to understand that there is a considerable conceptual and visceral overlap 

between the state of being subjected to psychological stress, externalizing affective 

states (emotions), and engaging in deceptive behavior. This leads to two fundamental 

principles that must be taken into account for paralinguistic tasks: 

1) A complete separation between these concepts / states is neither possible, 

nor necessarily desirable, since many forensic speech applications (and 

beyond) will have end objectives focused on higher level behaviors or 

manifestations (e.g., suspicious behavior monitoring), in which all of these 

elements are relevant both as distinct subtasks and for holistic approaches. 

2) Each concept / state implies relevance and cannot simply be subsumed 

within any of the others, since many individual edge cases encountered “in 

the wild” may very well fall just one of the states or under combinations of 

two of them, with only small manifestations of the third. 

 Among the features shown to offer promising results, spectral and cepstral 

features are prominent, such as spectrogram [He09] or wavelet [Zao14] decompositions, 

and the Mel-frequency cepstral coefficients (MFCCs) [Cas06, Li07], as well as other 

acoustic features, e.g., the fundamental frequency [Cas06], the jitter and the shimmer 

[Li07]. It was also shown that leveraging extended feature sets often improves system 

accuracy for the SSD task. 
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 Several approaches have been reported using traditional machine learning (ML) 

models, including hidden Markov models (HMMs) [Cas06], Gaussian mixture models 

(GMMs) [He09, Zao14], support vector machines (SVMs) [Bes16], or hybrid HMM-

GMM models [Li07]. More recently, deep learning (DL) solutions such as 

convolutional neural networks (CNNs) and hybrid convolutional-recurrent neural 

networks (CRNNs) have been reported as well [Avi19, Shi20]. 

 

3.2.  Proposed system architectures 
 

The basic proposed DL system consists of using a deep neural network (DNN) taking as 

input an extensive set of features obtained by applying high-level statistical functions on 

algorithmically extracted acoustic, spectral, and cepstral descriptors [Mih21b]. The 

DNN classifier is a feed-forward fully-connected neural network (FCNN) model, using 

between 2 and 4 hidden layers, with different numbers of nodes per layer, and an output 

layer whose size is equal to the number of classes taken into account for each 

experiment group (4-class, 3-class, or binary classification, i.e., 2-class). Two hidden 

layer node structures were taken into consideration: the ‘constant’ architecture, which 

consist of selecting the same number of nodes for each hidden layer; and the ‘log2dec’ 

architecture, which consists of selecting a progressively smaller number of nodes per 

active layer, following a decreasing log2(·) law. 

 A more advanced system using ensemble classifiers is also proposed. It is shown 

in Figure 3.3. To this end, a one-vs.-one (OvO) ensemble classification strategy was 

employed, inspired by the corresponding approach to multiclass SVM models. A total 

of K·(K−1)/2 classifiers (where K is the number of classes) were trained independently 

for each pair of classes and their output was fed, together with its rounded values (the 

intermediate binary predictions of each OvO DNN classifier), to a similarly structured 

DNN that performs final classification. 

 

 
 

Figure 3.3 – Advanced architecture: ensemble classifiers, one-vs.-one (OvO) strategy. 
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3.3.  Experimental setup and results 
 

The Speech Under Simulated and Actual Stress (SUSAS) database [Han98] contains 

approximately 14,600 recordings in English, with an average duration of 0.6 s. The first 

half of the corpus, having 9 speakers (all male), comprises recordings under simulated 

stress conditions, resulting in 11 classes: 7 referring to the speaking style (Fast, Slow, 

Soft, Loud, Clear, Angry, Question), 3 to the environment in which the speakers were 

placed at the time of recording (Cond50 – recorded while solving a medium difficulty 

task; Cond70 – recorded while solving a higher difficulty task; Lombard – recorded 

while listening to high-intensity pink noise triggering the Lombard effect), and a neutral 

class. The second half, having 7 speakers (3 female, 4 male), contains recordings made 

under actual stress conditions, resulting in 5 classes: 2 referring to solving complex 

tasks (MeS – medium difficulty task; HiS – higher difficulty task), 2 referring to riding 

two different roller coasters (Freefall and Scream), and a neutral class. 

 In order to match other works presented in literature, as well as the main target 

SSD application, i.e., binary detection of psychological stress from speech, the 

following datasets were created by partitioning the SUSAS database: 

• Set A – 4 classes under actual stress conditions: Scream (SCRM), HiS, 

MeS, and Neutral (NEU); total size: 3,567 recordings. 

• Set B – 3 classes from set A: HiS, MeS, and NEU; total size: 3,179 

recordings. 

• Set C – 2 classes from set A: STRS (grouping together SCRM, HiS, and 

MeS) vs. NEU; same size as set A. 

• Set D – 4 classes under simulated stress conditions: Angry (ANG), 

Lombard (LOM), Loud (LOU), and Neutral (NEU); total size: 2,518 

recordings. 

• Set E – 2 classes under simulated stress conditions: STRS (grouping 

together ANG, LOM, LOU, Cond50, and Cond70) vs. NEU; total size: 

7,556 recordings. 

 The DNN classifier depth varied between 2 and 4, with an initial number of nodes 

(for the first hidden layer) of 256 or 128. Other hyperparameters chosen include: the 

rectified linear unit (ReLU) activation function for the hidden layers, and the softmax 

activation function for the output layer; and Adam as the optimization algorithm. The 

same configurations were tested for the OvO DNN classifiers, with the final DNN 

classifier having a fixed depth equal to 2 or 3, as well as 6 or 12 nodes per hidden layer, 

for the 3-class and 4-class experiments. For the actual stress experiments (datasets A, B, 

and C), a 10-fold cross-validation testing scheme was selected, with a 70% / 30% 

dataset split between training and validation, leaving out 2 out of 7 speakers (1 female, 

1 male) for each validation subset. For the simulated stress experiments (datasets D and 

E), 10-fold cross-validation was also used, but with a 66% / 33% dataset split, leaving 

out 3 out of 9 speakers. For all unbalanced cases, class weighting was employed. 

 A comparison of the obtained results to other works presented in literature is made 

in Table 3.9, for all available cases, i.e., 4-class actual stress conditions (dataset A), 
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3-class actual stress conditions (dataset B), 4-class simulated stress conditions (dataset 

D), and 2-class simulated stress conditions (dataset E). The proposed system shows a 

significant performance (highlighted in green) increase for the 4-class actual stress 

(dataset A), 4-class simulated stress (dataset D), and 2-class simulated stress (dataset E) 

cases.  It is noted that, in the 3-class actual stress (dataset B) case, the only reported 

results [He09] were for training KNN and GMM models (with the latter demonstrating 

better results) on frequency-scaled PSD spectrograms extracted from vowel samples. 

These were extracted from only 547 data instances vs. the much higher number of 3,179 

instances used for the approach proposed in this work. This large discrepancy in the 

training and validation subset sizes can explain the higher accuracy obtained in [He09]. 

 

3.4.  Chapter conclusions 
 

In this chapter, deep learning systems were proposed, based on employing multiple 

feed-forward fully-connected deep neural networks (DNNs) connected together within 

an ensemble one-vs.-one (OvO) classification strategy configuration, and using as input 

an extensive set of algorithmically extracted acoustic, spectral, and cepstral features. 

The systems were tested on the SUSAS database, for 5 class grouping subsets (4-class, 

3-class, and 2-class SSD tasks for speech under actual stress conditions; 4-class and 2-

class tasks for speech under simulated stress conditions). 

 Significant performance improvements have been obtained over other relevant 

state-of-the-art results previously reported in literature, with an (unweighted / weighted) 

accuracy (UA / WA) of 68.8% / 65.5% for the 4-class actual stress case, 

59.2% / 62.4% for the 3-class actual stress case, 66.7% / 81.4% for the 2-class actual 

stress case, 75.5% / 75.5% for the 4-class simulated stress case, and 76.1% / 78.4% for 

the 4-class actual stress case. 

 

Table 3.9 – Performance comparison between the best results 

achieved in this work and other relevant results published in literature. 

 

Dataset Method 

Performance 

Avg. P 

[%] 

Avg. F1 

[%] 

Avg. R ≡ UA 

[%] 

WA 

[%] 

A 
[Zao14] – GMM – – 64.0 – 

This work 69.7 68.9 68.8 65.5 

B 
[He09] – GMM – – – 73.8 

This work 61.0 59.5 59.2 62.4 

D 

[Cas06] – HMM – – 72.9 – 

[Avi19] – CNN – – – 71.0 

This work 75.6 75.3 75.5 75.5 

E 
[Avi19] – CNN – – – 76.0 

This work 79.5 76.8 76.1 78.4 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

 

RODeCAR: A novel dataset 

for deceptive speech detection 
 

 

This chapter covers the end-to-end development of a novel, high-quality, objective 

dataset for deceptive speech detection (DSD): the Romanian Deva Criminal 

Investigation Audio Recordings (RODeCAR) dataset. Parts of the content herein were 

published as a conference paper by the candidate [Mih19b]. 

 

4.1.  Background and related work 
 

The results of a polygraph test provided by this test are not admissible as scientific 

evidence in a court of law. At best, they can influence the investigator to further pursue 

some lead or line of questioning. While a system for lie detection from speech would 

not provide legal support either, the results may prove to be of higher accuracy, since 

some speech characteristics are generally more difficult to alter voluntarily than the 

parameters tracked by conventional polygraph tests or newer psychological analysis 

methods, which can be manipulated into yielding false results [Ver09]. More so, even 

though a multimodal approach would lead to greater performance, an audio-only lie 

detector can be used inconspicuously in most relevant scenarios to reduce the subject’s 

awareness of its presence, leading to lower success in manipulating the test results. 

 In order to develop machine learning systems capable of detecting untruthfulness 

in speech, large datasets with precise and methodical annotation are required for 

training. The nature of the audio content should be as authentic as possible. Simulated 

data may affect the system’s ability to generalize from unrealistic to real case evaluation 

[Mor12]. For a sensitive task like lie detection, the concern is even greater, emphasizing 

the need for speech data from real-life situations. 
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 The main issues revealed for the reviewed publicly available DSD datasets are the 

use of actors or pre-trained participants (i.e., simulated behavior); having a specific goal 

in a familiar or relaxed environment (i.e., simulated scenario); having low-stakes tasks 

(i.e., reduced incentive); and using self-assessment or subjective methods to annotate 

the data (i.e., subjective annotation) [Mih19b]. To overcome these common significant 

disadvantages, a different approach is proposed in this work: 

1) Participants must not have prior guidance regarding their expected behavior 

and should have complete control over the content of their answers. 

2) A specific scenario should not be created; instead, within reason, a 

free-form framework should be employed, so as to reduce the predictability 

of the participants’ speech and/or that of the interviewer’s line of 

questioning (if applicable). 

3) Participants should be aware of relatively severe (high-stakes) consequences 

both for engaging in deceptive behavior or admitting incriminating truths. 

4) Data annotation should be performed by an expert, after doing follow-up 

work in order to objectively and clearly determine the truthfulness of the 

participants’ statements. 

5) If uncertainty over the labeling is minimized, but not eliminated, a 

confidence score should be formulated and associated with each interaction. 

 

4.2.  The Romanian Deva Criminal Investigation 

4.2.  Audio Recordings dataset 
 

In order to address the first three requirements previously outlined, it can be argued that 

one of the best sources of material would be recordings of real law enforcement 

investigative activity, in which the participants are actual interviewed suspects, 

witnesses, etc., and the context is given by hearings and interviews conducted by trained 

professional law enforcement investigators. This way, the participants have very little 

prior knowledge regarding the interviewer’s possible line of questioning, and there is 

great incentive both for honest parties to compellingly present a truthful account of what 

was asked about, as well as for suspects to convincingly hide any incriminating facts. Of 

course, the sensitive and often classified nature of such recordings is an immediate 

deterrent. However, the RODeCAR dataset was constructed using files covering 9 

closed older criminal cases during which investigations of murder, sexual assault, and 

fraud were conducted. The fourth requirement on the list was satisfied by performing a 

meticulous manual review of the recordings and the associated case notes together with 

the prosecutor who originally investigated the cases, in order to determine the 

truthfulness of the content. Finally, the inevitable uncertainty concerning the finer 

details or arising from unavailable information regarding the investigations is addressed 

by associating a confidence level to each interaction (file), varying from 70% to 100%. 

 After an initial filtering of the content, to select only the actual interactions with 

the interviewees, all 20 involved speakers were manually identified (ID) and associated 

with an ID number, with a special value reserved for the prosecutor (not counted for the 
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final dataset content). Their gender was also taken into account, having 4 females and 

16 males. The audio tracks were then extracted using the FFmpeg framework and saved 

in 16-bit PCM format, at 16 kHz sampling rate. 

 At this stage, the 26 processed audio recordings (in total, approximately 7.5 hours 

of material) are sorted into three distinct categories, depending on the content type and 

how the participants are involved: 

• Questionings (Q): interrogations of participants by the prosecutor in a 

formal environment and following a strict procedure; this is the most 

stressful scenario for the participants. 

• Interviews (I): interactions between the prosecutor and the participant in an 

informal environment (often more familiar to the questioned party); this is 

the least stressful scenario for the participants. 

• Testimonies (M): uninterrupted, free-form recounting / confessions given by 

the participants, often as a follow-up to a previous interrogation. 

 For each file, semi-automatic segmentation was employed. A segment is defined 

as a portion of speech from a single speaker, either (i) separated by a pause of at least 

200 ms from other portions of speech from the same speaker; or (ii) separated from 

other portions of speech from a different speaker, regardless of the onset delay duration. 

 The binary annotation (truthful, T / untruthful, UT) is made per speech segment, 

but in a global sense; e.g., a short segment containing factually accurate information, 

found within a longer speaker turn engaging in deceptive behavior, will also be labeled 

as untruthful. This is further supported by the argument that the state of mind the 

participants find themselves in when lying will be sustained by the long-term goal of 

deceiving the prosecutor, the cues still being present in the participants’ speech. 

 The dataset, in its complete and public form, consists of 4 hours and 46 minutes of 

total content, acquired from 20 speakers (4 female, 16 male) during testimonies, 

interviews and questionings conducted by Romanian law enforcement agencies, in 

which all participants were persons of interest (guilty parties, suspects, witnesses, etc.). 

Out of the total content duration, 3 hours and 28 minutes represent the participants’ 

speech segments; 2 hours and 6 minutes (60.5%) represent the truthful content, while 1 

hour and 22 minutes (39.5%) represent the untruthful content. The RODeCAR dataset is 

available upon request and can be obtained by following the instructions provided here: 

https://speed.pub.ro/downloads/paralinguistic-datasets/. 

 

4.3.  Chapter conclusions 
 

In this chapter, the Romanian Deva Criminal Investigation Audio Recordings 

(RODeCAR) dataset was introduced: a dataset of truthful and untruthful speech, 

constructed by analyzing, processing, and cross-examining archived original criminal 

investigation recordings. The most important advantage to be leveraged when using this 

dataset is the casework nature of the content, i.e., all the speakers were suspects or 

witnesses in real criminal investigations, and all interactions were spontaneous and were 

part of actual law enforcement activity. 

https://speed.pub.ro/downloads/paralinguistic-datasets/


 

 

 

 

 

 

 

 

 

 

 

Chapter 5 
 

 

Deceptive speech detection 
 

 

This chapter covers the task of detecting untruthful statements in a subject’s speech, 

also called deceptive speech detection (DSD). Parts of the content herein were published 

by the candidate as a conference paper [Mih21a] and as a journal article [Mih22a]. 

 

5.1.  Background and related work 
 

For DSD, previous research was carried out using traditional algorithmically extracted 

speech features and descriptors, including the mean and standard deviation of the pitch 

[Sen22], the MFCCs and their delta and delta-delta coefficients [Fat21a, Men17], jitter, 

the harmonic-to-noise ratio (HNR) [Jai16], or other acoustic and prosodic features 

[Men17, Vel19] based on the ComParE feature set. As for the ML and DL models 

employed, these include support vector machines (SVMs) [Jai16, Men17, Mon16, 

Sen22], random forests (RFs) [Men17, Sen22, Vel19, Zha20], FCNNs [Kop19, Men17, 

Sen22, Vel19], logistic regression [Kop19, Men17], or ensemble methods with multiple 

classifiers and average/majority voting [Vel19]. 

 

5.2.  Voice activity detection as a subtask 
 

One of the first tasks that must be addressed within a typical speech processing pipeline 

is voice activity detection (VAD) [Mih21a], which is used in this work as a subtask for 

DSD for computing several prosodic features. In this work, utterances are defined as the 

content of intervals of an audio signal in which speech is present, separated from other 

such speech intervals by pauses of at least 200 ms in duration. 

 The deep neural network (DNN) models investigated are FCNNs, LSTM-based 

RNNs, and CNNs, together with three optimized postprocessing techniques: hysteresis 
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thresholding, minimum duration filtering, and bilateral extension. The proposed 

FCNN-based VAD subsystems use two hidden layers and are coupled with traditional 

algorithmically extracted features, i.e., the energy, the zero-crossing rate (ZCR), the 

HNR, the normalized autocorrelation coefficient, and the first 13 MFCCs, which are 

grouped into several feature subsets. The RNN-based subsystems employ an LSTM 

layer, followed by fully-connected layers for the actual classification, and take as inputs 

the same feature sets. The CNN-based subsystems implement three pairs of 

convolutional and max-pooling layers, followed by fully-connected layers for 

classification. The raw time-domain samples or the frequency-domain representation of 

the signal, given by the 127-point Discrete Fourier Transform (DFT) are provided to the 

CNN. All features are computed at the frame level. The model’s output will represent 

the probability that the frames include speech content. A sliding window encompassing 

3 consecutive frames is used to average these probabilities and the resulting value is 

compared to a threshold. If the value is above the threshold, the window will be 

considered positive (containing speech). Consecutive positive windows determine the 

utterance start and stop times. To boost performance, hysteresis is used to obtain two 

separate thresholds, the higher one being involved when switching from negative to 

positive predictions. Additionally, if a resulting utterance has a shorter duration than a 

reference value, ∆tmin, it is discarded. For the remaining predicted utterances, a bilateral 

extension of their durations is implemented to compensate for the subsystem’s tendency 

to underestimate the utterance length. The extension consists of lowering the utterance 

start time by a value ∆text, while its stop time is increased by the same value. 

 Final testing was conducted on the real ambient noise subset of the Corpus and 

Environment for Noisy Speech Recognition (CENSREC-1-C) [Kit07] corpus, with 

detailed results being shown in Table 5.3, compared to other literature. The VAD 

subsystem was subsequently adapted for the DSD datasets. 

 

Table 5.3 – VAD utterance-level top test accuracy [%] vs. model type: CENSREC-1-C. 

 

Model 

Ambient noise type 

Restaurant Highway 
Average 

High SNR Low SNR High SNR Low SNR 

CENSREC-1-C 

baseline [Kit07] 
74.20 56.50 39.40 41.40 52.88 

[Esp11] 76.75 63.02 92.44 79.64 77.96 

[Fuj10] 92.75 65.51 100.00 100.00 89.57 

[Fuj14] 75.65 21.45 95.94 49.86 60.73 

FCNN 88.11 57.46 56.65 54.34 64.14 

RNN 74.25 39.10 65.80 51.50 57.66 

CNN-DFT1 85.21 64.92 82.60 75.65 77.10 

CNN-DFT2 97.10 59.13 95.36 89.56 85.29 

CNN-DFT3 99.13 68.69 97.97 90.72 89.13 
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5.3.  Proposed system architectures 
 

The basic deep learning system proposed for the main task, i.e., deceptive speech 

detection (DSD), consists of a DNN that takes as input a modified version of the 

extensive 2,258-dimensional feature set described in Chapter 2. The DNN classifier is 

an FCNN model, using between 2 and 3 hidden layers with 64 or 128 nodes per layer, 

but with an output layer whose size is equal to the number of classes taken into account, 

i.e., 2 (truthful and deceptive), and which uses the softmax activation function, instead 

of a single neuron applying the sigmoid activation function. 

 Regarding the modification to the feature set, it refers to having additionally 

included two utterance-wise prosodic features (UPFs) [Mih22a]: the utterance duration 

and the leading pause duration, i.e., the time interval between the end of the previous 

utterance and the start of the current one, both proven to be relevant for the DSD task. 

 A second DSD system is proposed, leveraging the nature of automatic feature 

extraction offered by CNNs. The model takes as input the magnitude spectrogram of 

each preprocessed utterance, extracted using Hamming windows of 25 ms duration with 

a 15 ms overlap, scaled linearly into 257 frequency bins (corresponding to half the 

sampling frequency). Subsequently, three stages of 2D convolutional layers are applied 

with a small receptive field, with max-pooling applied after each one to reduce the data 

dimensionality. The output of the final pooling layer represents the set of automatically 

extracted feature maps that are then flattened into a 1D vector, and passed through a 

sequence of fully-connected hidden layers. Together with the output layer, these form 

the actual classifier stages, and adopt a configuration (number of layers, number of 

nodes per layer) according to the best structure determined previously. 

 Lastly, in order to boost performance further, a final hybrid CNN-MLP network is 

proposed (the MLP being represented by the final set of fully-connected layers after the 

concatenation layer, i.e., the classifier head), combining the automatically extracted 

features provided by the convolutional stages with the best subset of algorithmically 

extracted features determined using the basic DNN-based DSD system. These features, 

extracted at the utterance level as described beforehand, are provided as an additional 

input, and are concatenated with the output of the flattening layer before being fed to the 

classifier (fully-connected) stage of the hybrid network. 

 

5.4.  Experimental setup and results 
 

The Real-Life Trial Data for Deception Detection (RLDD) [Per15] dataset comprises 

121 audio-visual recordings in English of defendants and witnesses, obtained from trials 

conducted in the United States, with 61 recordings being labeled as deceptive and 60 as 

truthful. The content duration totals 56 min, with an average recording length of 28 s. 

Excluding prosecutors, lawyers, and other interviewers, the total number of speakers is 

56 (22 female, 34 male). The second dataset, RODeCAR, was described in Chapter 4. 

 Other research previously published on DSD for the RLDD dataset uses a 

speaker-level [Sen22] or a recording-level approach [Fat21a, Jai16, Vel19]. The former 
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involves determining the overall truthful / deceptive attitude of each speaker (56 

instances), while the latter classifies each entire audio recording (121 instances) as 

truthful / deceptive. In this work, the main focus is on a different and more challenging 

‘local lie’ (utterance-level) approach, i.e., determining which particular utterances in 

each recording are truthful vs. deceptive. To this end, from each audio recording 

available in the RLDD and RODeCAR datasets, all utterances were extracted, totaling 

931 (467 truthful and 464 deceptive) and 5,859 (3,136 truthful and 2,723 deceptive). 

 Unless otherwise specified, for all DSD experiments, 10-fold cross-validation 

with speaker separation was employed as the testing methodology, with an 80% / 20% 

training-validation split, ensuring the same ratio of truthful and deceptive samples were 

available in each subset, as well as having the same ratio of male to female speakers. 

 The basic FCNN-based models were evaluated for a depth (number of hidden 

layers) between 2 and 3, with 64 or 128 nodes per hidden layer. Other hyperparameters 

chosen included: the ReLU activation function for the hidden layers; Adam as the 

optimization algorithm; L1-norm regularization with the regularization parameter equal 

to 10–4. Since the RODeCAR dataset is slightly imbalanced in terms of class distribution 

(53.5% of the utterances are truthful), class weighting was employed. 

 The basic systems were tested for the total feature set of size 2,260 described in 

Section 5.3, as well as for several feature subsets. Finally, using a novel proposed 

feature selection algorithm based on the two-sample Kolmogorov-Smirnov test (KS), an 

additional 5 subsets were obtained by selecting the most relevant 10, 20, 50, 100, and 

200 features, in terms of the KS statistic, resulting in a total number of 36 feature 

subsets. For the other two proposed DSD systems, i.e., based on a CNN model or using 

a hybrid CNN-MLP network, the input spectrograms must all be of the same size, thus 

requiring zero-padding to the duration (in number of frames) of the longest utterance in 

each dataset. Additionally, a dropout of 0.4 was used before each pooling layer, and 

L2-norm regularization was implemented instead. The fully-connected stage consists of 

two layers, with 32 nodes per layer. All other applicable hyperparameters follow the 

same configuration as for the basic, FCNN-based DSD system described previously. 

 In order to provide a comparison between the proposed model and the other DSD 

systems reported in literature, the utterance-level results were postprocessed on a macro 

level in order to correspond to the alternative speaker-level and recording-level results, 

as applicable. For the RLDD dataset (the only one for which such comparisons can be 

made, since no other results have been published for the RODeCAR dataset by external 

parties up to the date of writing this thesis), the following steps are taken: 

• for the speaker-level approach, all utterances that belong to each speaker are 

grouped together and a majority vote is taken over the utterance-level labels 

predicted by the CNN-MLP model; 

• for the recording-level approach, a similar step is performed, but per 

recording instead of per speaker. 

 For the RLDD dataset, the speaker-level results and the recording-level results are 

given in Table 5.11 and Table 5.12, respectively, in terms of the (weighted) accuracy. 

For RODeCAR, the performance for adapting the system to the speaker-level approach 

has also been determined to be 83.5%. The recording-level approach is inapplicable due 
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Table 5.11 – Speaker-level approach test accuracy [%] 

comparison vs. other works published in literature: RLDD. 

 

System Accuracy [%] 

[Sen22] – RF 71.2 

[Sen22] – MLP 61.0 

This work: CNN-MLP; input: 1,183×257 / 2,392×257 linear magnitude 

spectrogram + 10 / 340 feat.; 16 kHz s.r. 
85.6 

 

Table 5.12 – Recording-level approach test accuracy [%] 

comparison vs. other works published in literature: RLDD. 

 

System Accuracy [%] 

[Fat21a] – SVM 81.5 

[Vel19] – Ensemble (KNN + RF  + MLP) 70.0 

[Jai16] – SVM 34.2 

This work: CNN-MLP; input: 1,183×257 / 2,392×257 linear magnitude 

spectrogram + 10 / 340 feat.; 16 kHz s.r. 
88.6 

 

to the nature of the RODeCAR dataset since its individual files have very long durations 

(from tens of minutes up to one hour). 

 

5.5.  Chapter conclusions 
 

In this chapter, several voice activity detection (VAD) subsystems based on deep neural 

networks (DNNs) were proposed, implemented, and validated. The VAD subsystem is 

employed for the extraction of utterance-wise prosodic features. 

 For the main DSD task, it was shown that the utterance-level approach is better 

suited than other speaker-level or recording-level approaches for forensic applications. 

Several neural network-based DSD systems were proposed, implemented, and 

validated. The highest-performing architecture was a novel hybrid CNN-MLP-based 

network, leveraging a fusion of automatically extracted feature maps and subsets of 

hand-crafted features, selected based on a novel proposed feature selection algorithm. 

Within the most relevant utterance-level (‘local lie’) approach, the system reaches an 

accuracy of 63.7% on the RLDD dataset, and of 62.4% on the RODeCAR dataset. 

 For RLDD, the speaker-level performance was 85.6%, representing a 20.22% 

increase vs. other comparable systems reported in literature; and the recording-level 

performance was 88.6%, a corresponding 8.71% increase. 

 For the RODeCAR dataset, the recording-level approach is incompatible, but the 

speaker-level approach led to an accuracy of 83.5%. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 6 
 

 

Speech emotion recognition 

for suspicious behavior monitoring 
 

 

This chapter covers the task of determining the affective content present in speech, also 

called speech emotion recognition (SER). Parts of the content herein were published as 

a conference paper [Mih19a] and as a journal article [Mih21c] by the candidate. Parts of 

the content herein were supported by the candidate’s participation as a research assistant 

in project PN-III-P2-2.1-SOL-2016-02-0002, agreement 2SOL/2017, funded by the 

Romanian Government through UEFISCDI: Intelligent Systems for Video and Audio 

Analysis – Technologies and Innovative Video Systems for Person Re-identification and 

Analysis of Dissimulated Behavior (SPIA-VA) [Mih20]. 

 

6.1.  Background and related work 
 

When designing SER systems, there are the two main schools of thought in psychology 

that establish the conceptual modeling of emotions: 

• discrete classes [Laz99], wherein each emotion (or, rather, each emotion 

class) is holistically distinguished from the others; and 

• dimensional models [Wat99], where a number of continuous value 

psychological measures (e.g., arousal or valence) form a multidimensional 

affect space (typically 2D), each emotion being a sub-zone within it. 

 In this sense, promising results have been reported in literature using machine 

learning (ML) and deep learning (DL) models and techniques, including hidden Markov 

models [Sha23b], support vector machines (SVMs) [Jin15], multilayer perceptron 

(MLP) DNNs [Atm20, Lat20a, Rao17], recurrent neural networks (RNNs) with long 

short-term memory (LSTM) cells [Gha19, Liu20, Mir17], convolutional neural 



Ch. 6 – Speech emotion recognition for suspicious behavior monitoring 
  

23 

networks (CNNs) [Tan21, Zha18a], hybrid models [Fah20], or advanced convolutional-

recurrent neural networks (CRNNs) [Che18, Zha19], using either algorithmic or 

automatic (“true deep learning”) feature extraction. 

 

6.2.  Dimensional models for continuous-to-discrete 

6.2.  affect mapping 
 

Since conventional dimensional models derived in the field of psychology only allow a 

vague “mapping” of the affect space, without exact numerical positioning or delineation 

of the corresponding emotion classes, more precise (yet compact and low-complexity) 

models would prove useful to be constructed using ML techniques. These models would 

allow determining the emotion class of an instance based on its continuous affect space 

position (e.g., its arousal and valence values). An alternative approach consists of 

adopting different multidomain strategies, in which the discrete and continuous 

paradigms are directly tied together through a-priori mapping [Mih21c]. 

 The main source of data for fitting the dimensional model would be a dataset with 

dual discrete and continuous annotation of emotional content (labels for emotion 

classes, and numerical values for the affective dimensions). The only such available 

corpus is the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset 

[Bus08], having almost exclusively been used for emotion classification. An additional 

source can be used, such as the Warriner-Kuperman-Brysbaert (WKB) corpus [War13], 

which includes affective dimension annotations for a number of words, the relevant 

ones being those representing the emotion classes, such as “anger” (i.e., the “concept of 

anger”), etc. In the proposed approach, these annotated values are leveraged to initialize 

the class centroids (means). The reasoning is that including the WKB corpus greatly 

increases reliability and leads to better generalization. 

 Three ML algorithms were tested for developing the dimensional model for affect 

mapping: K-means clustering (referred to as the K-means model, KMM), GMM fitting 

and SVM fitting. For the KMM and GMM approaches, the class centroids (means) were 

initialized in one of two ways: (i) using the values estimated from averaging over the 

IEMOCAP data (native initialization); (ii) using the values estimated from the WKB 

data (WKB initialization). The first option allows for better data fitting, but, for the 

second, model generalization is greater. SVMs lead to even better results thanks to the 

higher-dimensional transformation of the affect space, but can only use IEMOCAP data. 

In all experiments, 5-fold cross-validation was employed, reserving one speaker session 

for testing (i.e., 20% of the data). The results are given using both the unweighted 

accuracy (UA) and the weighted accuracy (WA) as metrics. 

 In Table 6.2, the proposed dimensional model mapping approach is compared to 

other works using standard classification systems for discrete emotions. As can be seen, 

dimensional models can lead to best performance, as long as reliable dimensional 

affective dimension data exists; in other words, if the overall affect space coordinates of 

speech segments can be correctly predicted by a regression model. 
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Table 6.2 – Maximum performance comparison to other works using standard 

classification systems for discrete emotions. 

 

Context Best results 

[Che18] UA = 64.7%,  

[Fah20] UA = 66.0%, WA = 70.5% 

[Jin15]  WA = 68.6% 

[Lat20a] UA = 61.0%,  

[Liu20] UA = 65.0%, WA = 66.1% 

[Mir17] UA = 58.8%, WA = 63.5% 

[Zha18a] UA = 63.9%, WA = 70.4% 

[Zha19] UA = 67.0%, WA = 68.1% 

Dimensional model (DM) mapping UA = 74.3%, WA = 72.5% 

 

6.3.  Proposed system architectures 
 

In this section, multiple complete system architectures to be employed for SER are 

presented, including types based on multidomain strategies leveraging the dimensional 

model mapping concept detailed in Section 6.2. 

 The proposed system architectures for the SER task were iteratively developed, 

and present increasing levels of complexity, falling within six categories (approaches): 

1) single DNN models, for classification or regression; 

2) ensemble classification strategies comprising multiple DNN models; 

3) multidomain systems, uniting the two emotion recognition paradigms; 

4) single DNN classification models adapted through transfer learning (TL); 

5) heterogeneous fusion classification through TL-DNN models; 

6) homogeneous ensemble classification using TL-DNN models. 

 The single DNN model approach takes as input the extensive 2,258-dimensional 

set of acoustic, spectral, and cepstral features. The DNN classifier is a feed-forward 

fully-connected neural network (FCNN) model, using between 1 and 4 hidden layers, 

with different numbers of nodes per layer, and with an output layer of size equal to 

either the number of classes applicable or having two neurons, corresponding to the 2D 

affect space dimensions. The second, more advanced type of system revisits the 

ensemble classification approach presented in Chapter 3, extending it to the two main 

strategies adopted by SVM models for multiclass problems: one-vs.-one (OvO) and 

one-vs.-rest (OvR). For the multidomain systems, seven proposed forms are defined: 

• type 1: the native form of joint learning; 

• type 2: the first active layers are common for the two tasks, then splitting 

into an output layer for one of the tasks and a second active section 

used only for the other task – (A) regression is modeled only by the 

first section, classification is modeled by both; (B) classification is 

modeled only by the first section, regression is modeled by both; 
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• type 3: the first active section is focused on one of the tasks, with the 

second active section being trained for the other task on the same 

initial input data together with the outputs of the first active section 

– (A) regression is modeled by the first section, classification is 

modeled by the second section; (B) classification is modeled by the 

first section, regression is modeled by the second section; 

• type 4: these sequential approaches leverage pretrained dimensional model 

(DM) mappings as described in Section 6.2 to establish the link 

between the continuous affect space and the position within 

(determined by regression) and the emotion class – (A) direct 

application of the DM is used to determine the emotion class based 

on the output of the DNN regression model; (B) a second DNN is 

trained on the initial input data together with the preliminary 

classification provided by the DM. 

 Transfer learning (TL) is a deep learning (DL) technique that leverages the data 

space transformations corresponding to a task for which DNNs were designed by 

adapting them (through retraining) for a different, but related task. In the context of 

SER, this is achieved by adopting very deep, high-performing image recognition models 

and representing data instances in a form compatible with images, e.g., spectrograms. 

The modern top-performing image recognition DNNs (hereafter denoted as TL-DNNs) 

are: Xception, VGG16 and VGG19, ResNet50, ResNet50V2, InceptionV3, 

InceptionResNetV2, NASNetMobile and NASNetLarge, and EfficientNetB0 through 

EfficientNetB7, trained on the ImageNet dataset. 

 In this work, the first proposed TL-based approach consists of retraining the top 

layers of each TL-DNNs in order to develop single DNN classification models. Going 

further, a form of ensemble information representation through fusion is proposed in the 

form of a heterogeneous TL-DNN system: the core of each of the TL-DNN models is 

used to extract deep feature map representations of the input data. All representations 

are then flattened and concatenated into a single FV that is subsequently fed to a DNN 

classifier. Finally, the homogeneous TL-based approach, unlike the heterogeneous 

system, this architecture leverages the ensemble classification strategies (OvO and 

OvR), but with TL-DNN models. The homogeneity property refers to the fact that, for 

each class combination, the same TL-DNN model is used within a single system. 

 The three TL-DNN-based approaches for SER systems are denoted as the fourth, 

fifth, and sixth overall approach for SER. For the TL-DNN-based approaches, the input 

given to the networks must be in the form of spectrograms. These were extracted as 

linear or log magnitude spectrograms using Hamming windows of 25 ms duration 

(15 ms overlap), with linear or Mel scaling, and 3 color (RGB) channels. 

 

6.4.  Experimental setup and results 
 

The Berlin Database of Emotional Speech (EMODB) [Bur05] is a German language 

dataset comprising 535 short utterances recorded by 10 actors (5 female, 5 male) 
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specially chosen by an expert jury with spoken language naturalness and recognizability 

as the main criteria. The utterances have an average duration of 2.5 s and a maximum 

duration of 8 s. The 7 emotion classes considered are: Anger (ANG), Disgust (DIS), 

Fear (FEA), Sadness (SAD), Boredom (BOR), Happiness (HAP) and Neutral (NEU). 

 Since the focus of this work is on forensic and law enforcement applications, 

particularly suspicious behavior monitoring, negative emotion classes are more relevant 

and important to detect (individually, for applications requiring more detail and 

nuance), as well as negative affective manifestations in general (considered together as 

a single group, without subdivisions, as an overall monitored class). Apart from the full 

set of 7 classes, three additional subsets were considered. The 4 considered subsets are: 

• EMODB-7: all 7 classes: ANG, DIS, FEA, SAD, BOR, HAP, and NEU; 

• EMODB-5N: 5 classes: ANG, DIS, FEA, SAD, and NEU; 

• EMODB-4: 4 classes: ANG, SAD, HAP, and NEU; 

• EMODB-2N: 2 classes: Negative (NEG; grouping together ANG, DIS, 

FEA, and SAD) vs. NEU. 

 The Crowd-sourced Emotional Multimodal Actors Dataset (CREMAD) [Cao14] 

is an English language dataset comprising 7,442 recordings of facial and vocal affective 

content manifested in sentences spoken by 91 directed actors (43 female, 48 male). The 

encompassed 6 emotion classes were: Anger (ANG), Disgust (DIS), Fear (FEA), 

Sadness (SAD), Happiness (HAP), and Neutral (NEU). The average duration of the 

recordings is 2.5 s. The 4 subsets utilized in this work are: 

• CREMAD-6: all 6 classes: ANG, DIS, FEA, SAD, HAP, and NEU; 

• CREMAD-5N: 5 classes: ANG, DIS, FEA, SAD, and NEU; 

• CREMAD-4: 4 classes: ANG, SAD, HAP, and NEU; 

• CREMAD-2N: 2 classes: Negative (NEG; grouping together ANG, DIS, 

FEA, and SAD) vs. NEU. 

 The IEMOCAP dataset [Bus08] includes 10 actors (5 female, 5 male) working in 

pairs to solve scripted and improvised English speaking tasks, with a total number of 

10,039 audio-visual recordings. A total of 10 discrete emotion classes (Anger, Fear, 

Disgust, Sadness, Happiness, Frustration, Excitement, Surprise, Neutral, and Other) are 

available, but with many strongly underrepresented. This results in having to group only 

a smaller subset of them into 4 new classes, i.e., Neutral (NEU); Sadness (SAD); 

Anger + Frustration (ANG); and Happiness + Excitement (HAP). For the continuous 

dimensions, arousal and valence were chosen. The 2 considered subsets are: 

• IEMOCAP-4: 4 classes: ANG, HAP, SAD, and NEU; 

• IEMOCAP-2N: 2 classes: Negative (NEG; grouping together ANG and 

SAD) vs. NEU. 

 For Approach 1 (single DNN models), the number of hidden layers was chosen 

between 1 and 4, with the number of neurons for the first hidden layer being chosen 

from the set {8, 16, 32, 64, 128, 256, 512, 1024}, and varying the dropout rate between 

0.1 and 0.5. Other hyperparameters chosen included: the rectified linear unit (ReLU) 

activation function for the hidden layers, and either the softmax (for classification) or 

the linear output activation function (for regression). The same configurations were 
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Table 6.13a – Performance comparison between the best results for SER classification 

achieved in this work and other relevant results published in literature. 

 

Data 

subset 
System 

Perf. 

UA 

[%] 

WA 

[%] 

EMODB-7 

[Ker19] – SVM + recursive feature elimination – 86.2 

[Che18] – CRNN – 82.8 

[Lot17] – SNN + LSM + Gammatone filterbank – 82.4 

[Bis13] – SVM + gender recognition – 81.5 

[Cha14] – GMM 79.8 – 

[Yil21] – SVM + feature selection 78.6 79.1 

[Kan21] – GA + clustering 77.5 – 

[Cha14] – SVM 77.0 – 

This work: Approach 2 – ensemble classification (OvR) with 

multiple DNNs (FCNNs). 
82.6 82.9 

EMODB-4 

[Vas15] – GMM + SVM – 84.3 

This work: Approach 2 – ensemble classification (OvR) with 

multiple DNNs (FCNNs). 
88.9 89.1 

EMODB-5N 

[He15] – MLP + GA-based modified backpropagation – 80.4 

This work: Approach 2 – ensemble classification (OvR) with 

multiple DNNs (FCNNs). 
91.2 91.4 

EMODB-2N 

[Cas08] – SVM – 95.8 

[Vas15] – GMM + SVM – 94.9 

This work: Approach 1 – single DNN (FCNN) classifier. 95.1 98.3 

CREMAD-6 

[Gha20] – SVM – 57.2 

[Gha19] – LSTM – 57.0 

[Bea18] – LSTM – 41.5 

This work: Approach 6 – homogeneous ensemble classification 

(OvO) with multiple TL-DNN models (EfficientNetB1). 
51.8 54.6 

CREMAD-4 
This work: Approach 6 – homogeneous ensemble classification 

(OvO) with multiple TL-DNN models (EfficientNetB1). 
65.8 70.3 

CREMAD-5N 
This work: Approach 6 – homogeneous ensemble classification 

(OvO) with multiple TL-DNN models (EfficientNetB0). 
54.7 58.7 

CREMAD-2N This work: Approach 1 – single DNN (FCNN) classifier. 72.8 72.6 

IEMOCAP-4 

[Yi22] – DNN + adversarial data augmentation 63.7 63.2 

[Lat20a] – MLP + GAN-based synthetic data 61.0 – 

[Yi22] – SVM + adversarial data augmentation 60.0 64.7 

[Yil21] – SVM + feature selection 59.4 59.5 

[Mir17] – MLP + LSTM + attention 58.7 63.5 

[Pan20] – LSTM 48.7 57.1 

[Rao17] – MLP + i-vectors – 48.8 

This work: Approach 2 – ensemble classification (OvO) with 

multiple DNNs (FCNNs). 
58.7 61.6 

IEMOCAP-2N 
[Rah12] – SVM + feature adaptation – 69.8 

This work: Approach 1 – single DNN (FCNN) classifier. 69.0 71.2 
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Table 6.13b – Performance comparison between the best results for SER regression 

achieved in this work and other relevant results published in literature. 

The results are separated for each affective dimension: A = arousal, V = valence. 

 

Dataset System 

Performance 

MSE (loss) ρ ρc 

A V A V A V 

IEMOCAP 

[Atm20] – MLP – – – – 0.611 0.301 

[Zha18b] – DNN – – – – 0.392 0.715 

This work: Approach 1 – single 

DNN (FCNN). 
0.073 0.180 0.677 0.408 0.621 0.343 

 

tested afterwards for the OvO and OvR DNN classifiers (Approach 2), with the final 

DNN classifier having a fixed depth of either 1, 2, or 3 layers. The configurations were 

also employed for the several types of multidomain systems (Approach 3), as well as for 

the fully-connected classification heads in the TL-DNN experiments. 

 For all experiments, 10-fold cross-validation was employed as the testing 

methodology, with an 80% / 20% training-validation split, ensuring as best as possible 

that each emotion class and each gender was proportionally represented in each training 

and/or validation subset. Speaker separation was ensured for all experiments. 

 Performance comparisons between the proposed systems and others reported in 

literature are made in Table 6.13a and Table 6.13b. 

 

6.5.  Chapter conclusions 
 

In this chapter, a detailed introduction into the SER task and its challenges was given, 

establishing the two fundamental emotion modeling paradigms. SER systems based on 

deep neural networks (DNNs) spanning six levels of complexity were proposed, 

developed, and tested: single DNNs, multiple DNNs connected together following 

ensemble classification strategies (one-vs.-one, OvO, and one-vs.-rest, OvR), and 

systems leveraging transfer learning (TL) for the top modern image recognition deep 

learning models, either as standalone TL-DNN models or as heterogeneous or 

homogeneous ensemble classifiers. The systems were tested on the most relevant SER 

datasets available: EMODB, CREMAD, and IEMOCAP, for the standard full set of 

classes, as well as for additional negative emotion subsets relevant for suspicious 

behavior monitoring and other applications that fall within the scope of this work. 

 The proposed systems achieved state-of-the-art results (up to 83% accuracy) for 

the EMODB all-class subset, while the performance on the corresponding CREMAD 

and IEMOCAP subsets was lesser (up to 55% accuracy for CREMAD and 62% 

accuracy for IEMOCAP), but still comparable to other published research. Additionally, 

for all negative-emotion-only subsets, the proposed solutions offered top performance. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 7 
 

 

Speech emotion remanence 
 

 

This chapter covers the study of speech emotion remanence in the context of forensic 

speech, and how speech emotion recognition (SER) can be applied to the topic. Parts of 

the content herein were published as a journal article by the candidate [Mih22b]. 

 

7.1.  Background and related work 
 

Beyond the performance of SER systems themselves, one of the challenges presented 

by these tasks consists of discerning patterns in the temporal evolution of the affective 

content that would indicate suspicious behavior. To this end, the temporal evolution of 

the affective content of speech samples was analyzed, using a novel proprietary dataset, 

on a short (within 1 hour) and on a longer timescale (over 5 days) [Mih22b]. 

 Previous research [Liu21, Su21, Zha21a, Zha22] has shown that ML and DL 

models still perform relatively poorly cross-corpus, i.e., when evaluating the model on 

different corpora than the ones it was trained on, even when using advanced and costly 

techniques for input data adaptation. This reduced generalization power may be caused, 

at least in part, by differences in emotional expression vs. the culture, background, age, 

etc. of the speaker, but there exists no conclusive evidence for or against this idea. 

 

7.2.  Study on speech emotion remanence 
 

The two main hypotheses of this study were the following [Mih22b]: 

1) If a human interaction is emotionally triggering for the subject, then their 

affective response will not decay instantly after the interaction ends, but 

over a longer time period, and subsequent emotionally neutral interactions 

will still be accompanied by an aroused negative affective state. 
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2) In the context of the existence of a forthcoming emotionally charged event 

for the subject (and of which they are aware), as the event approaches, the 

subject will experience higher intensity emotions and will exhibit a 

correspondingly increased affective response. 

 To test both hypotheses, a dataset was constructed using recordings of recurrent 

spoken interactions with a number of students who were behind on their university 

exams, and were studying in order to attempt them for the second or third time. There 

were 18 students (4 female, 14 male) involved in the process, of ages between 19.7 

years and 23.3 years. The total number of recorded utterances was 270, and the total 

duration of the dataset’s speech content is 1 hour and 8 minutes.  

 In order to validate the applicability of automatic speech emotion recognition 

within this context, systems based on fully-connected neural networks (FCNNs) were 

developed, following the same approach illustrated in Chapter 6. Two hidden layer node 

structures were taken into consideration: the ‘constant’ architecture, consisting of the 

same number of nodes for each hidden layer; and the ‘log2dec’ architecture, consisting 

of a progressively smaller number of nodes per layer, following a log2(·) law. The depth 

varied between 2 and 4, with an initial number of nodes of 256, 128, 64 or 32. Dropout 

was included after each hidden layer, with a rate between 20% and 50%. Other 

hyperparameters chosen include: the rectified linear unit (ReLU) activation function for 

the hidden layers, and the softmax (for classification) or identity (for regression) 

activation function for the output layer. 

 The data is considered vs. each timestamp in Figure 7.2, with the labels referring 

to the initial affective response, and the affective response after 15 and 30 minutes of 

neutral conversation, respectively. For the regression problem, the values for arousal 

and valence vs. each day are represented in Figure 7.3 for each timestamp: for each 

speaker individually (thin lines) and the mean over all speakers (thick lines). 

 

 
 

Figure 7.2 – Percentage ratio of speakers identified as expressing negative emotions. 
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Figure 7.3 – Arousal and valence evolution vs. day, for each timestamp. Thin lines 

represent individual speaker evolutions, while the thick labeled data lines represent the 

average values for all speakers. 

 

7.3.  Chapter conclusions 
 

In this chapter, insight was gained into speech emotion remanence by investigating 

short (under 1 hour) and long (5 day) timescales, different than the ones used in other 

speech emotion recognition research, more relevant for the targeted applications. 

 It was proven that: (1) if a human interaction is emotionally triggering for the 

subject, then their affective response will not decay instantly, but over a longer time 

period, and subsequent emotionally neutral interactions will still be accompanied by an 

aroused negative affective state; and (2) if an emotionally charged event is forthcoming 

for the subject, as the event draws closer, the subject will experience higher intensity 

emotions and will exhibit a correspondingly increased affective response. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 8 
 

 

Conclusions 
 

 

8.1.  Developments and obtained results 
 

In Chapter 1, the scope and objectives were defined, covering the development of AI 

systems for automatic recognition of paralinguistic elements using only speech data, 

with a focus on manifestations of negative emotions, high psychological stress levels, 

and engagement in deceptive behavior, the main application area being forensic speech. 

 Chapter 2 provided a summary of the main theoretical concepts employed during 

the development of this work in terms of the algorithmically extracted speech features 

used for analysis and processing, the models adopted in developing the systems, and the 

training and testing methodologies, techniques, and performance metrics. 

 In Chapter 3, systems were proposed and developed for speech under stress 

detection (SSD), employing ensembles of feed-forward fully-connected DNNs. 

Performance increases on the SUSAS dataset have been obtained over previously 

reported state-of-the-art results, with an (unweighted / weighted) accuracy of 

68.8% / 65.5% for the 4-class actual stress case, 59.2% / 62.4% for the 3-class actual 

stress case, 66.7% / 81.4% for the 2-class actual stress case, 75.5% / 75.5% for the 

4-class simulated stress case, and 76.1% / 78.4% for the 4-class actual stress case. 

 Chapter 4 focused on introducing the Romanian Deva Criminal Investigation 

Audio Recordings (RODeCAR) database: a dataset of truthful and untruthful speech, 

constructed by the candidate by analyzing, processing, and cross-examining archived 

original criminal investigation recordings. The dataset consists of 3 h 28 min of speech 

segments acquired from 20 speakers (4 female, 16 male): 2 h 6 min truthful (60.5% of 

the dataset), 1 h 22 min untruthful (39.5% of the dataset), objectively annotated. 

 In Chapter 5, the main task is developing systems for DSD. However, for the 

proposed DSD processing pipeline, a voice activity detection subsystem is required, 

which is first developed and discussed. After showing that the utterance-level approach 
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is better suited for forensic and law enforcement applications than other speaker-level or 

recording-level approaches, four neural network-based DSD systems were proposed, 

implemented, and validated. The best-performing architecture was a novel hybrid 

network. Within the utterance-level approach, the system reaches an accuracy of 63.7% 

on the RLDD dataset, and of 62.4% on the RODeCAR dataset. The proposed system 

was also tested to determine its speaker-level and recording-level performance. For 

RLDD, the speaker-level performance was 85.6%, representing a 20.22% increase vs. 

other comparable systems reported in literature; and the recording-level performance 

was 88.6%, a corresponding 8.71% increase. The recording-level approach was not 

compatible with RODeCAR; the speaker-level approach led to an accuracy of 83.5%. 

 Chapter 6 provided a detailed introduction into the speech emotion recognition 

(SER) task and its challenges. DNN-based systems spanning six levels of complexity 

were proposed, developed, and tested, including single DNNs, multiple DNNs 

connected together following ensemble classification strategies (one-vs.-one, OvO, and 

one-vs.-rest, OvR), as well as systems leveraging transfer learning (TL) for the top 

modern image recognition deep learning models, either as standalone TL-DNN models 

or as heterogeneous or homogeneous ensemble classifiers. The systems were tested on 

the most relevant SER datasets: EMODB, CREMAD, and IEMOCAP. The proposed 

systems achieved state-of-the-art results (up to 83% accuracy) for the EMODB all-class 

subset, while the performance on the corresponding CREMAD and IEMOCAP subsets 

was lesser (up to 55% accuracy for CREMAD and 62% accuracy for IEMOCAP), but 

still comparable to other published research. Additionally, for all subsets comprising 

only negative affective content, the proposed solutions offered the top performance. 

 Lastly, Chapter 7 served as a follow-up on SER, offering a deep dive into speech 

emotion remanence, investigating short (under 1 h) and long (5 day) timescales, which 

are more relevant for the applications within the scope of this work. It was proven that: 

(1) if a human interaction is emotionally triggering for the subject, then their affective 

response will not decay instantly, but over a longer time period, and subsequent 

emotionally neutral interactions will still be accompanied by an aroused negative 

affective state (emotional remanence); and (2) if an emotionally charged event is 

forthcoming for the subject, as the event draws closer, the subject will experience higher 

intensity emotions and will exhibit a correspondingly increased affective response. 

 

8.2.  Original contributions 
 

General and global contributions 

 

• Classification strategies using ensembles of neural networks in OvO and 

OvR configurations were developed and leveraged successfully for SSD, 

DSD, and SER. The description of the strategies was given in Chapter 3, 

and results obtained employing them were detailed in Chapter 3 and 

Chapter 5, and published in [Mih21b, Mih22a]. 
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• A set of algorithmically extracted features for automatic paralinguistic 

element recognition tasks was developed, based on extending the most used 

reference feature set available in literature with several additional features. 

In all tasks (SSD, DSD, SER), the proposed feature set was employed 

successfully. Described in Chapter 2, the results obtained with neural 

networks trained on it were discussed in Chapter 3, Chapter 5, and 

Chapter 6, and published in [Mih21b, Mih22a]. 

 

• A feature selection algorithm for binary classification problems based on the 

two-sample Kolmogorov-Smirnov test was proposed and applied for DSD. 

The description of the algorithm was given in Chapter 5, and the results 

obtained incorporating it into the DSD systems were published in [Mih22a]. 

 

• A voice activity detection (VAD) subsystem was developed and employed 

to extract prosodic features used for DSD. The description of the system 

was given in Chapter 5, and the results were published in [Mih21a]. 

 

Speech under stress detection (SSD) contributions 

 

• Novel approaches were employed for SSD in the context of forensic speech 

applications, using class groupings and analyses specific to the scope of this 

work. The results obtained demonstrated improved performance over most 

of the state-of-the-art literature previously published in the field. The results 

were presented in Chapter 3 and published in [Mih21b]. 

 

Deceptive speech detection (DSD) contributions 

 

• The Romanian Deva Criminal Investigation Audio Recordings (RODeCAR) 

dataset was developed end-to-end for DSD tasks. Its complete description 

was given in Chapter 4 and published in [Mih19b]. This novel dataset is: 

i) one of the very few publicly available datasets that provides reliable, 

realistic, objectively annotated data for DSD by leveraging recordings 

with non-simulated behavior in realistic high-stakes scenarios; 

ii) the only such dataset available for the Romanian language; 

iii) a consistent database for paralinguistic applications, particularly DSD, 

comprising approximately 3.5 hours of spoken content. 

 

• A novel approach, more challenging, more detailed, and better suited for 

forensic and law enforcement applications, was employed for DSD by 

training the proposed systems to discern between truthful and deceptive 

speech at the utterance-level (i.e., short-term) instead of the recording-level 

(i.e., long-term) or the speaker-level (i.e., overall profiling): 
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i) the reasoning was explained in Chapter 5 and published in [Mih22a], 

representing the first published results using the utterance-level 

proposed approach; 

ii) the results obtained at the recording-level and speaker-level were also 

given in Chapter 5, and represent significant performance increases 

over the state-of-the-art literature previously published. 

 

• Hybrid deep neural network architectures were developed for DSD, 

combining the automatic feature extraction function of convolutional neural 

networks with the relevance of well-chosen algorithmically extracted (i.e., 

hand-crafted) features. The detailed description of the hybrid architectures 

was illustrated in Chapter 5, and the results obtained with this approach 

were published in [Mih21a, Mih22a]. 

 

Speech emotion recognition (SER) contributions 

 

• A theoretical and experimental investigation of speech emotion remanence 

was conducted to validate two important hypotheses for law enforcement 

and forensic applications: (1) affective responses to emotionally charged 

events decay over long time periods, with subsequent neutral interactions 

being accompanied by aroused negative affective states; and (2) imminent 

emotionally charged events determine higher intensity emotions and 

manifestations of  correspondingly increased affective responses. It was 

presented in Chapter 7 and published in [Mih22b]. The applied study: 

i) is one of the few studies conducted on the topic, and the only study 

performed at the timescales chosen (within 1 hour and over 5 days), 

which were justified as the most relevant for the targeted applications; 

ii) included experimental validation of using SER systems to monitor the 

emotional manifestations and their temporal evolution relevant for the 

envisaged applications. 

 

• Improved dimensional model mappings were developed for SER, refining 

the link between the discrete emotional class paradigm and the continuous 

affect space modeling paradigm for emotion analysis and recognition. They 

were discussed in Chapter 6 and published in [Mih21c]. The models: 

i) were developed by correlating the data in one of the few available 

dually-annotated SER datasets, also one of the most often cited and 

used in recent research in the field; 

ii) were improved through multimodality, by refining the initial versions 

obtained based on the audio data with relevant emotional class textual 

data from a large corpus. 

 

• Novel approaches were employed for SER in the context of forensic speech 

applications, with a focus on negative emotions as specific to the scope of 
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this work. Part of the obtained results demonstrated improved performance 

over most of the state-of-the-art literature previously published in the field. 

The results were presented in Chapter 6 and partially published in [Mih19a]. 

 

• Systems based on transfer learning were developed for SER using each of 

the best-performing modern image recognition deep neural networks 

(VGG16, VGG19, Inception, Xception, and several versions of ResNet50, 

NASNet, and EfficientNet), both standalone and via ensemble classification 

strategies. The methodology and results were presented in Chapter 6. 
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8.4.  Perspectives for further developments 
 

Regarding the candidate’s future research and work in the fields of machine learning, 

deep learning, speech analysis and processing, automatic recognition of paralinguistic 

elements, and forensic speech applications, there are several promising avenues 

available and of continued great interest and relevance. 

 For each of the automatic paralinguistic element recognition tasks within the 

scope of this work, i.e., SSD, DSD, and SER, further improvements could be attained 

by leveraging different conventional models such as stacked autoencoders (SAEs), or 

more extreme forms such as extreme learning machines (ELMs). Additionally, beyond 

investigating alternative models, an additional attractive idea is to adapt techniques 

specific to other types of deep neural networks, e.g., the attention mechanisms used in 

recurrent neural networks (RNNs) or in transformers. Particularly for the DSD task, a 

multimodal approach involving both audio and textual data will likely prove to lead to 

better discerning vocal lie detection systems. For SER, further research is required into 

developing language-independent automatic recognition systems. 
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