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Chapter 1 

1 Introduction 

1.1 Problem Description: High Resource Costs of 
ASIC Pre-Si Verification 

In application-specific integrated circuit (ASIC) development, the simulation-based 
pre-Silicon verification process is popular due to its flexibility and features that help 
engineers achieve the scenario coverage goals. The desire is to reach all these goals 
with a minimal time cost, but this verification approach proves to be demanding and 
tedious. This is mostly caused by redundant scenarios generated by the randomization 
mechanisms of today’s functional simulators. 

1.2 Motivation 

Major verification challenges are caused by iterative or manual procedures that 
require the verification engineers’ input. Using today’s most popular verification 
strategies and methodologies, such bottlenecks have been observed: 

1. Problem 1: Manual semantic extractions from the specification document are 

prone to unintentional error insertions. 

2. Problem 2: Covering the remaining few percentages in the functional coverage 

metric can require unaffordable time and resource costs. 

3. Problem 3: Manual simulation debugging for identifying the failure's root cause 

can require unacceptable time and resource costs. 

4. Problem 4: Completion of complex function proving in formal verification can 

require unaffordable time costs. 

As data mining enables valuable process optimizations during the past decade 
[Don22], my main research interest is harnessing yet hidden synergies between 
functional verification and artificial intelligence (AI). These specific synergy points 
are known as intelligent verification (IV) approaches. 
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1.3 Scope of the Doctoral Thesis 

The objective of this doctoral thesis is to research and identify potential solutions for 
alleviating the effects of the bottlenecks outlined in subchapter 1.2. After inquiring 
into different industrial reports on integrated circuit (IC) manufacturing challenges 
[LZC+14], my investigation indicated that the costliest bottleneck in the IC 
development industry is the one pointed out by Problem 2. Practically, the time cost 
should be reduced using a state-of-the-art strategy for performing process 
optimization. Therefore, the solutions proposed in this research thesis introduce a 
methodology and a framework that successfully filter out redundant stimuli packets. 

1.4 Content of the Doctoral Thesis 

Chapter 2 outlines a literature review, with a high emphasis on state-of-the-art 
synergies and smart approaches for reducing both resource allocations and time costs 
in ASIC functional verification. Specifically, AI-assisted engines that optimize key 
processes are analyzed. In the last few paragraphs, the associated highlights and 
lowlights are compared to identify the most promising strategy. 

  Chapter 3 presents the theoretical fundamentals of the prime machine 
learning (ML) approaches identified in Chapter 2. The smart optimization principle 
for reducing the coverage closure time using stimuli redundancy reduction (SRR) is 
introduced. I also introduce the principles of the novel supervised learning for stimuli 
redundancy reduction methodology (SL4SRRM) that I designed and proposed as the 
main implementation goal of this research. 

Chapter 4 introduces the implementation details of an original Coverage-
Aware Stimuli Generation (CAStiG) framework that uses the novel SL4SRRM 
methodology structure described in Chapter 3. The first subchapter specifies the target 
design-under test (DUT) involved in this research project. Key functional 
requirements of the DUT are selected for planning the verification process using the 
novel framework. The following subchapters outline the chosen technologies, other 
implementation approaches, and the strongpoints of the proposed AI-assisted 
framework. The chapter closes by outlining the structure of the artificial neural 
network (ANN) that powers the proposed SL4SRRM-based engine. 

 Chapter 5 presents the experimental results obtained after deploying a series 
of use cases on the novel CAStiG framework. Different nonlinear distribution 
coverage models are analyzed to measure the time reductions in reaching the coverage 
closure milestone. The framework is benchmarked by comparing the performance 
results with today’s standard, the coverage-driven verification (CDV) approach. 

Finally, yet importantly, Chapter 6 draws the conclusions and highlights the 
original research contributions presented in this thesis. Moreover, future perspectives 
and further research directions are underlined in the final few lines. 
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Chapter 2 
 

2 Related Work 

2.1 Comparison between the IV Strategies 

After completing a literature review on four different IV strategies [Cri21], I list the 
main advantages, denoted Adv, and disadvantages, denoted Dasv, in Table 2.1. The 
comparison is done across four performance metrics: the implementation effort, the 
process speeds, the process accuracy, and the solution’s usability. 

Regarding the implementation effort, the Scenario Coverage Feedback 
features the most interesting strong points. Specifically, data mining (DM) methods 
do not require significant domain knowledge, while inductive logic programming 
(ILP) approaches generate data in convenient, human-readable formats. However, the 
latter requires a tedious amount of domain knowledge, and this lowlight is also 
affecting Smart Root-Cause Analysis. 

Using the fourth IV strategy, heavy automation can be obtained, but the 
complex mathematical apparatus may bring modeling challenges. Meantime, for the 
first IV strategy, considerable effort is needed due to manual sentence annotations. 

Concerning the processing speed, genetic algorithms (GA) are efficient in 
parallelizing process execution, whereas support-vector machines (SVM) provided 
much smaller improvements. Also, the formal methods reduce the execution time, but 
this advantage is canceled when searching for convenient hyperparameter values. 
Similarly, the third IV strategy reduces the debug time, but this strong point is lost 
when performing a dozen of data ordering steps. Lastly, the Intelligent Requirement 
Extraction approach automates constraint implementation, but the generation of the 
intermediate specification cancels the gain. 

For model accuracy, the GAs are favorite because they proved to reach the 
global optimum. In contrast, Bayesian networks (BN) have low accuracies whereas 
DM provides inaccurate results when dealing with previously unseen examples. 

The first IV strategy improves accuracy, the errors are reduced, but this is 
counterbalanced by manual labeling. Moreover, the Smart Root Cause Analysis 
approach can benefit from accurate SVM models only if revision ranking is possible. 

In addition, the solution usability metric indicates which strategies are 
scalable. Specifically, for the second IV strategy, the ILP methods proves to be a 
general-use solution because it maps complex dependencies. Moreover, the SVMs  
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Table 2.1 The Comparison of Different IV Strategies 

Performance  
Metric 

IV 
Strategy 

Implement. 
Effort 

Process 
Speed 

Process 
Accuracy 

Solution 
Usability 

Intelligent 
Requirement 

Extraction 
(Chapter 2.2) 

Adv. - 
Automatic 
constraints 
generation 

Automatic 
semantic 
extraction 

Avoid 
unintentional 
human errors 

Dadv. 
Manual 
sentence 
labeling 

Intermediate 
specification 
generation 

Domain-
specific 
labeling 

IEEE 
documentation 
standard 

Scenario 
Coverage 
Feedback 

(Chapter 2.3) 

Adv. 

DM: Low 
domain 
knowledge 

ILP: Human 
readable 

GA: 
Parallelism 

GA: Global 
optimum 

SVM: Low 
training 
dependencies 

ILP: Complex 
mappings 

Dadv. 
ILP: High 
domain 
knowledge 

SVM: Low 
time reductions 

BN: Initial 
assignments 

DM: Novel 
examples 

GA: Complex 
coverpoints 

Less employed 
for functional 
coverage 

Smart 
Root-Cause 

Analysis 
(Chapter 2.4) 

Adv. - 
Narrower bug 
hunting space 

SVM - 

Dadv. 
High domain 
knowledge 

Data ordering 

Regressions 
(trace analysis) 

Revision 
ranking 

Unsuitable for 
small projects 
(low revision) 

Reference 
revision 

Formal 
Intelligent 

Proving 
(Chapter 2.5) 

Adv. 
Heavy 
automation 

Algorithm 
switch 

N/A - 

Dadv. 
Complex 
mathematical 
apparatus 

Hyper-
parameter 
assignment 

N/A 
Not suitable 
for large 
projects 

 
perform well when inferring completely new mapping patterns. Unfortunately, when 
deploying GAs on complex tasks, the research reports limited performance results.  

The Smart Root-Cause Analysis strategy proves to have a quite small 
application scope, in which the revision system needs to be populated with hundreds 
of commits. Moreover, formal methods are known to be unusable across large projects 
with complex functionalities. 

With respect to Intelligent Requirement Extraction, the highlight is that dozens 
of unintentional human error types can be minimized or totally avoided, but this 
application scope is diminished since a ridiculously small number of organizations 
write their specification documents according to the IEEE 830-1998 standard [Iee98]. 
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Chapter 3 
 

3 Theoretical Fundamentals 

3.1 Supervised Learning for Stimuli Redundancy 
Reduction Methodology (SL4SRRM) 

In the previous chapter, the IV strategy that outlined the most promising research 
interest for reducing the costs of IC functional verification is the Automatic Novel Test 
Generation using Scenario Coverage Feedback. The desire is to minimize the time 
cost by driving novel scenarios and discarding redundant test sequences that were 
previously deployed during the same test regression. This can be achieved by 
reducing the stimuli redundancy rate. To the best of our knowledge, the literature 
indicates two or three methods [XZB+16] for reducing the number of test sequences, 
but there is no terminology or focus on directly reducing the stimuli redundancy rate. 
Therefore, I introduced the SRR terminology in my work referenced in [CB21].  

After analyzing the state of the art and harvesting the observations I made in 
the previous paragraphs, I continued with designing a methodology that can 
efficiently implement the SRR principle using various supervised ML models. I 
introduce the working principles and the implementation guidelines for the novel 
SL4SRRM methodology in my work referenced in [CB21]. From my point of view, 
the aim is to use an intelligent algorithm, preferably an ANN that can comprehend the 
DUT’s transfer functions between the input stimuli packets and the target coverage 
items. This way, the novel, efficient, and scalable SL4SRRM-powered tool models 
and uses the DUT’s inverse transfer functions on the coverage feedback loop. 

3.1.1 Training Phase within the SL4SRRM Methodology 

For the SL4SRRM methodology described in article [CB21], the sequence of steps 
for training the model is depicted in Figure 3.6 (a). In this phase, the DUT is run 
under different scenarios generated by a usual logic simulator, as in a typical 
regression setup [Piz04]. A training example is created by pairing an input stimuli 
sequence with the associated coverage result. This way, the ML algorithm receives 
the training examples after they undergo basic preprocessing steps before they are fed 
into the ML engine [KKP06].  
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Figure 3.6 The Learning Phases Proposed for the SL4SRRM Methodology [CB21] 

Depending on the implementation, the algorithm can be instructed to learn the 
inverse sampling function of the DUT’s coverage model. This is done by selecting the 
coverage data as input features while the stimuli data is wielded as output labels. The 
algorithm predicts novel stimuli data that are compared with the reference stimuli 
data. For each batch [Hea15], the neural engine computes the prediction error that can 
efficiently adjust the model’s synaptic weights in the next training batch [KKP06]. 
Moreover, the training set can be used across hundreds of epochs and with each new 
training epoch, the SL4SRRM-centred framework enriches the training set with 
previously unseen corner cases. Therefore, in this phase, the ML algorithm acts as a 
training engine. 

3.1.2 Inference Phase within the SL4SRRM Methodology 

The steps I propose for the SL4SRRM methodology during the inference phase are 
outlined in Figure 3.6 (b). Throughout this phase, the same DUT is no longer exposed 
to scenarios generated by the logic simulator. Instead, the DUT receives the novel 
stimuli sequence output during the previous inference iteration by the trained ML 
model. Practically, the algorithm receives the current coverage data and based on its 
training experience, the neural engine can predict previously unseen stimuli data by 
modeling the inverse sample function of the DUT. The novel stimuli sequences have a 
high probability to improve the coverage results with each new inference iteration. 

Before the DUT receives the stimuli packet, a dedicated block post processes 
the data and assembles a novel stimuli sequence [BF00]. Consequently, in this phase, 
the ML algorithm acts as an inference engine. 
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Chapter 4 
 

4 SL4SRRM-based framework for 
Coverage-Aware Stimuli 
Generation (CAStiG) 

For exploring the possibility of reducing stimuli redundancy, I implemented an ML-
assisted flexible framework that can deploy functional verification use cases. In 
Chapter 4, I describe the techniques and the setup used for running the novel 
SL4SRRM-powered CAStiG framework. 

4.1 Modeling the Design Under Test  

For evaluating the proposed SRR proof of concept, the analysis focuses on verifying 
the selection mechanism of a de-multiplexer. Specifically, the user first runs test 
scenarios that deliver S = 1000 stimuli packets that target the 32-bit address values. 

After this regression subset is run, the coverage database and the stimuli 
database are extracted from the simulation output data. The training set is obtained, 
and the initial results indicate a functional coverage rate of 85.8% for the coverpoint 
model that distributes the driven address values in N uniformly distributed intervals. 

The goal of the learning engine is to obtain 100% functional coverage on the 
address values that are sent on the DUT input. 

4.2 Common Base Technologies 

Using object-oriented programming technologies, the coverage items and the input 
stimuli sequences are efficiently modeled using the highlights offered by the structural 
inheritance and the polymorphism paradigms. 

When the verification engineer runs a test regression, today’s logic simulators 
can store the coverage results in a database that complies with the UCIS format 
[UCI12]. This standard allows the users to merge different vendor coverage data into 
a unified coverage database. Therefore, the ML training set is extracted from the 
database with ease using dedicated utilities such as CoverageLens [Sta17]. 
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4.3 The Strongpoints of the Flexible Framework 

For developing complex neural engines, the research community created 
dedicated APIs that are user-friendly, offer pre-trained models, and enable fast model 
deployment. One such powerful library preferred for modeling deep neural networks 
is the Keras API of the open-source TensorFlow library [Goo15]. By using this 
development platform, the proposed SL4SRRM-powered CAStiG framework 
[CB21] avoids implementing the lowlights of the online learning strategy and 
harnesses an intelligent solution using a pure Python programming environment. 

For seamless integration in the learning engine, the DUT’s coverage model is 
designed using a dedicated Python module and another important advantage is that the 
Numpy random generator module is used for creating the initial stimuli packets. This 
means that other Keras modules can easily process the stimuli dataset since it is 
represented in a standard Numpy binary format. 

4.4 Artificial Neural Network Architecture 

According to the SL4SRRM methodology described in subchapter 3.1, the ANN 
should be part of the coverage feedback loop and learn the inverse sampling function 
of the DUT’s coverage model. 

As underlined in subchapter 3.1, during both learning phases, the coverage 
data is used as input for the ANN, while stimuli data is collected from the output layer 
neuron. In terms of scenario modeling, the stimuli sequences are designed to contain a 
single item field that represents a 32-bit address value for the DUT. 

 Multilayer feedforward perceptrons are considered for undergoing the 
evaluations of the CAStiG framework. Since the structure of the ANN depends on the 
target coverpoint size, the ANN layout is slightly different from one verification use 
case to another. Precisely, the input layer of the ANN has a number of neurons equal 
to the number of coverpoint bins. Thus, for a coverpoint with a size of C = 8 bins, the 
structure of the corresponding multilayer perceptron has C = 8 neurons on the input 
layer. 

The most stable activation function proved to be the Rectified Linear Unit 
(ReLU) compared to other options like the SoftMax or the Sigmoid functions. 
Moreover, the analysis showed that the most efficient learning optimizer is the 
Adaptive Moment Estimation (Adam) since it provides the best accuracy and the 
fastest convergence time. 

Regardless of the target verification task, the CAStiG framework is 
configured to deploy the learning steps with fixed hyperparameter values. Therefore, 
during the training phase, the CAStiG framework uses E = 400 learning epochs that 
provide sufficient iterations to optimally adjust the synaptic weights. Moreover, each 
learning batch is sized at B = 10 training examples/batch which provides the best 
tradeoff between execution runtime and the final learning accuracy. 



 

9 

Chapter 5 
 

5 Use-Cases and Experimental 
Results 

For assessing the proof of concept of the novel SL4SRRM methodology described in 
subchapter 0, the proposed CAStiG framework introduced in Chapter 4 is evaluated 
for reaching some of the most common functional coverage goals of typical ASIC 
verification processes. 

The next subchapters underline the details of how two functional coverpoint 
use cases are implemented and deployed using the CAStiG framework. Also, the use 
cases are considered for benchmarking the proposed framework and the results 
indicate a significant reduction in the total number of stimuli packets applied to the 
inputs of the DUT. 

5.1 Benchmarking Model 

To better indicate the SRR effect within the SL4SRRM methodology and how the 
coverage closure time is significantly reduced when deploying the CAStiG 
framework, I introduce a benchmarking model in paper [Cri23] that counts the 
number of stimuli packets that are driven through the DUT. 

The benchmarking model does not use any third-party component and it is 
fully designed as a feature of the CAStiG framework introduced in Chapter 4. For the 
CDV approach, the benchmarking model uses a pure random-number generator with 
a uniform probability distribution. Also, the benchmark process performs a design 
exploration by deploying and collecting data for a dozen of coverpoint types and 
sizes. In addition, the analysis is extended by comparing cases with initial functional 
coverage rates of 33%, 50%, or 75%. 

An important metric used in the benchmarking process is the Number of 
Stimuli packets that go Through the DUT (NSTD). In addition, since the CAStiG 
framework adds processing penalty for generating the stimuli packets, it is also 
interesting to measure the Number of Stimuli packets Generated by the ANN (NSGA). 
Thus, the main objective of the benchmarking process is to identify the coverpoint 
configurations that minimize the values for the NSTD metric. Since the NSGA 
indicates the processing workload that falls on the ANN, it is important to reduce 
these numbers as well, but with lower priority compared to the NSTD values. 
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5.2 Linear Coverpoint with N Equally Distributed 
Intervals 

5.2.1 Coverpoint Model 

One of the most common coverage items is the coverpoint that divides the entire 
range of address values in N equally distributed intervals. Considering that the 
addressing bus is W = 32 bits wide, instead of individually covering all M = 2W = 232 
address values, from a functional perspective, it is sufficient to consider a coverpoint 
with N equally distributed intervals across the range of integer values [0: M-1]. The 
range limits for each of these C = N = 1000 bins are outlined in expression (5.3). By 
analyzing (5.3) and because the ANN is designed to replicate the DUT’s inverse 

𝑏𝑖𝑛 ↔ ቂ𝑖
ଶయమ

ଵ
∶  (𝑖 + 1)

ଶయమ

ଵ
− 1ቃ     , 𝑖 ∈ [0, 999] ∩ ℕ                  (5.3) 

sampling behavior, the function modeled by the supervised learning algorithm is 
mentioned in equation (5.4). 

       𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑ௗௗ௦௦ = 𝑡𝑎𝑟𝑔𝑒𝑡ೣ
∙

ଶయమ

ଵ
                             (5.4) 

In case the bus values are generated from a uniform distribution, a function 
that indicates the probabilities of covering each bin of the coverpoint is the 
Probability Mass Function (PMF). It points to a uniform probability distribution 
across all bins and is computed in equation (5.5). 

𝑃(𝑏) =
ெିଶ

ே∙ெ
=

ଶయమିଶ

ଵ∙ଶయమ      , 𝑖 ∈ [0: 999] ∩ ℕ                                     (5.5) 

5.2.2 Model Fitting Results 

To obtain a learning configuration that optimally solves this coverage task, I deploy 
dozens of ANN models using different hyperparameter combinations until the 
learning performance metrics indicate an optimal solution. The hyperparameters and 
their value ranges are outlined in Table 5.1. After finishing the hyperparameter  

Table 5.1 Hyperparameter values used during the machine learning exploration 
processes for model fitting 

Hyperparameter Notation 
Value Range 

Min. Max. 

Initial learning rate initial_lr 1.00E-06 1.00E-03 

Learning rate decay steps decay 1.00E+03 1.00E-05 

Decay rate decay_lr 0.5 0.99 
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analysis step, the optimum results are manually identified and depicted in Figure 5.2. 
One can observe that the model’s accuracy of hitting a novel coverage bin 

increases rapidly after performing 150 learning epochs. After interpreting this optimal 
solution, the observations are listed in Table 5.2. One can see that only 20 epochs are 
needed to reach coverage closure. However, the other learning metrics obtain optimal 
values well beyond the 20 learning epochs threshold. 

5.2.3 Benchmarking Results 

For this type o coverage item, the CAStiG framework benchmarking process covers a 
dozen of coverpoint configurations with different values for N, ranging from C = 64 
bins up to C = 8192 bins. Compared to the classic CDV approach, the objective is to  

 
Figure 5.2 The optimal learning configurations obtained for all three coverpoint use 

cases                                                                                                                       
(a) The learning accuracy of hitting novel coverage bins                                            

(b) The coverage percentage (the verification goal)                                                    
(c) The learning loss function                                                                                       
(d) The learning rate function 
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Table 5.2 Learning performance results for the linear coverpoint with N = 1000 
equally distributed intervals 

Metric Value Number of Epochsa 

Accuracy 98.51% 240 

Coverage 100% 20 

Loss 0.14 250 

Learning rate 8.50E-08 400 

a. The number of learning epochs after which the presented value is reached 

see if the CAStiG framework manages to reduce the total number of stimuli packets 
required for reaching coverage closure. 

After all the coverpoint configurations are deployed and after all the 
associated performance metrics are measured, the benchmarking results point to a 
considerable reduction of the total NSTD for this use case. The most relevant 
benchmarking statistics are mentioned in Table 5.3. 

For indicating the performance improvements, the tenth column outlines the 
reduction of the NSTD using the CAStiG framework compared to the CDV strategy. 
Precisely, at least two times and up to 8.6 times less NSTD are sufficient for 
achieving the same verification goal using the proposed SL4SRRM-based CAStiG 
framework compared to the classic CDV approach. 

For better visualizing the benchmarking results, the most important data 
outlined in Table 5.3 is used for creating the charts depicted in Figure 5.3. Focusing 
on the CAStiG framework results, chart (a) indicates how the total NSTD values 
increase together with the size of the coverpoint. 

As the configurations with an initial coverage rate of 33% generate the best 
NSTD results, a comparison between the CDV approach and the CAStiG framework 
solution is captured in Figure 5.4. It can be observed that the NSTD values obtained 
with the CAStiG framework are significantly smaller than the corresponding NSTD 
values obtained with the classic CDV approach. In addition, the difference increases 
together with the size of the coverpoint.  

Chart (c) in Figure 5.3 depicts the results outlined in the tenth column of Table 
5.3 and it can be seen that the configurations with a higher coverpoint size provide 
better NSTD improvements. Moreover, the performance variances across different 
initial coverage rates also increase together with the size of the coverage item. 

The eleventh column of Table 5.3 is presented in chart (b) of Figure 5.3. Since 
the CAStiG framework’s NSGA is larger compared to the CDV NSGA, the chart 
indicates only negative performance results. Like the NSTD ratio, the NSGA ratio 
improves together with the size of the coverpoint. Practically, the NSGA overhead 
decreases, as the size of the coverage item increases. Still, configurations that have 
higher initial coverage ratios have better NSGA ratios.  

Consequently, the best NSTD ratio is obtained when the initial coverage rate 
is at 33% because the CAStiG framework is involved more in generating novel 
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Table 5.3 Benchmarking results for the linear coverpoint with N equally distributed 
intervals 
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33% 

64 300 25 64 89 2099 2667 4791 3.37 -15.97 

128 700 50 128 178 4610 5504 10164 3.93 -14.52 

256 1400 100 256 356 7746 9301 17147 3.93 -12.25 

512 3000 200 512 712 12990 16718 29908 4.21 -9.97 

1024 6500 420 1024 1444 23728 28535 52683 4.50 -8.11 

2048 16000 820 2048 2868 41760 50517 93097 5.58 -5.82 

4096 45000 1700 4096 5796 87772 103219 192691 7.76 -4.28 

8192 100000 3400 8192 11592 213066 241664 458130 8.63 -4.58 

50% 

64 300 45 64 109 1789 2159 3993 2.75 -13.31 

128 700 90 128 218 4214 4762 9066 3.21 -12.95 

256 1400 180 256 436 7268 8380 15828 3.21 -11.31 

512 3000 360 512 872 13150 15104 28614 3.44 -9.54 

1024 6500 700 1024 1724 27241 30720 58661 3.77 -9.02 

2048 16000 1400 2048 3448 45555 51883 98838 4.64 -6.18 

4096 45000 2800 4096 6896 81080 91477 175357 6.53 -3.90 

8192 100000 6000 8192 14192 200253 219546 425799 7.05 -4.26 

75% 

64 300 90 64 154 1823 2005 3918 1.95 -13.06 

128 700 177 128 305 3638 3917 7732 2.30 -11.05 

256 1400 360 256 616 7680 8226 16266 2.27 -11.62 

512 3000 700 512 1212 12540 13312 26552 2.48 -8.85 

1024 6500 1450 1024 2474 20926 22528 44904 2.63 -6.91 

2048 16000 2900 2048 2800 35853 38571 77324 5.71 -4.83 

4096 45000 5800 4096 9896 73436 78507 157743 4.55 -3.51 

8192 100000 11500 8192 19692 174324 183501 369325 5.08 -3.69 
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Figure 5.3 A comparison of the obtained benchmarking results for several linear 

coverpoint configurations with N equally distributed intervals                                   
(a) The total NSTD values obtained using the CAStiG framework                                                        

(b) The NSGA performance results of the CAStiG framework                                                                      
(c) The NSTD performance results of the CAStiG framework compared to the CDV 

approach 

scenarios that reduce stimuli redundancy. This analysis uncovers a tradeoff between 
these two performance metrics and it can be seen that when the NSTD ratio is best, 
the NSGA ratio is worst, and vice versa. 

5.3 Nonlinear Coverpoint with Power-of-Two 
Distribution 

5.3.1 Coverpoint Model 

A typical coverage item that uses a nonlinear grouping of the address values is the 
coverpoint with power-of-two distributed intervals [Bir15]. The mappings between 
each bin index and the associated range of captured values are suggested in (5.6). One  
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Figure 5.4 A comparison between the CDV and the CAStiG framework with 33% 

initial coverage rate for the linear coverpoint configurations with N equally 
distributed intervals 

  𝑏 ↔ ൣ2   ∶    2ାଵ − 1൧     , 𝑖 ∈ [0: 𝑁 − 1] ∩ ℕ                            (5.6) 

can observe that the higher the bin index, the more bus values are included in that bin. 
The nonlinear PMF for this type of coverage item is defined in (5.7)  

𝑃(𝑏) = 𝑃(𝑏) =
ଶ

ଶಿିଵ
     , 𝑖 ∈ [0: 𝑁 − 1] ∩ ℕ                          (5.7) 

In this case, the probability increases together with the number of values captured in 
the respective bin. 

5.3.2 Model Fitting Results 

As in the previous case study, the same set of deep learning hyperparameters are 
used. Similarly, the tuning process uses the same hyperparameter value ranges, as 
presented inTable 5.1. The analysis proceeds under several iterations and Figure 5.2 
shows that the learning metrics indicate interesting performance results. 

After analyzing the optimal solution, the highlights are mentioned in Table 
5.4. Precisely, after 312 learning epochs, the accuracy reaches 100%, but the coverage 
rate significantly increases from 34.38% to 100% in just 17 epochs. Compared to the  

Table 5.4 Learning performance results for the nonlinear coverpoint with “power of 
two” distributed intervals 

Metric Value Number of Epochsa 

Accuracy 100% 312 

Coverage 100% 17 

Loss 0.029 312 

Learning rate 7.65E-04 312 

a. The number of learning epochs after which the presented value is reached 
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linear coverpoint with N = 1000 equally distributed intervals, this coverage item has 
only C = 32 bins, which requires a smaller number of learning epochs to reach 

coverage closure. Moreover, the learning process ends at epoch number 312 since the 
accuracy rate reaches 100% by that point. 

5.3.3 Benchmarking Results 

The full list of benchmarking results is outlined in Table 5.5. Since the outline of this 
table is similar to the profile of Table 5.3, the meaning of each column remains the 
same as already described in subchapter 5.2.3. 

Fortunately, Table 5.5 points at least 5 times and up to 15000 times less NSTD 
required for reaching the same verification goal using the proposed SL4SRRM-based 
CAStiG framework compared to the typical CDV approach. Figure 5.6 has a similar  

 

Figure 5.6 A comparison of the obtained benchmarking results for several nonlinear 
coverpoint configurations with “power of two” distributed intervals                                   
(a) The total NSTD values obtained using the CAStiG framework                                                        

(b) The NSGA performance results of the CAStiG framework                                                                      
(c) The NSTD performance results of the CAStiG framework compared to the CDV 

approach 
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Table 5.5 Benchmarking results for the nonlinear coverpoint with power of two 
distributed intervals 
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33% 

32 2.0E+7 1300 32 1332 2297 2441 6038 15,015  3,312 

24 1.5E+6 200 24 224 3622 3955 7777 6,696  192 

20 5.0E+5 110 20 130 2717 3093 5920 3,846 84 

16 5.5E+4 40 16 56 2552 3067 5659 982  9.72 

14 10000 30 14 44 2112 2538 4680 227  2.14 

12 3000 13 12 25 1853 1188 3054 120  -1.02 

10 1200 8 9 17 1678 2661 4347 70  -3.62 

8 270 5 7 12 1170 1879 3054 22  -11.31 

50% 

32 2.0E+7 80000 32 80032 2917 3066 85983 249  232 

24 1.5E+6 3200 24 3224 3594 3874 10668 465  140 

20 5.0E+5 550 20 570 2620 2888 6058 877  82 

16 5.5E+4 240 16 256 2774 3172 6186 214  8.89 

14 10000 100 14 114 2104 2554 4758 87  2.10 

12 3000 50 12 62 1791 2430 4271 48  -1.42 

10 1200 30 10 40 1429 1867 3326 30  -2.77 

8 270 17 7 24 1257 1749 3023 11.25  -11.20 

75% 

32 2.0E+7 1.2E+6 32 1.2E+6 3679 3865 1.2E+6 16.67  16.56 

24 1.5E+6 1.5E+5 24 1.5E+5 1940 2032 1.5E+5 10.00  9.74 

20 5.0E+5 2.5E+4 20 2.5E+4 3460 3803 3.2E+4 19.98  15.50 

16 5.5E+4 2850 16 2866 1406 1522 5778 19.19  9.52 

14 10000 1500 14 1514 1197 1301 3998 6.61  2.50 

12 3000 300 12 2800 2015 2324 4639 1.07  -1.55 

10 1200 110 10 120 1501 1711 3322 10.00  -2.77 

8 270 45 8 53 1200 1449 2694 5.09  -9.98 
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layout as Figure 5.3 and it depicts benchmarking results outlined in Table 5.5. 
In chart (a), the total NSTD values increase together with the size of the 

coverpoint, and this behavior is like the one observed in the previous use case. 
Another similarity is that the NSTD values decrease together with the initial coverage 
rate. However, the differences between the NSTD values across different initial 
coverage rates are significantly higher for this type of coverpoint. 

Similarly, the configurations with an initial coverage rate of 33% generate the 
best NSTD results. Therefore, Figure 5.7 outlines a comparison between the CDV 
approach and the CAStiG framework solution. Like the previous use case, the NSTD 
differences increase together with the size of the coverpoint. 

In Figure 5.6, chart (c), the NSTD improvements increase together with the 
coverpoint size, as for the linear coverpoint. However, the performance variances 
across different initial coverage rates are much larger for this nonlinear coverpoint. 

Chart (b) indicates the NSGA performance outcome and positive results are 
obtained starting with a coverpoint size of C = 14 bins. For nonlinear coverpoints with 
small sizes, the ANNs have an implicit process overhead during the training epochs, 
which makes them less effective than the CDV approaches. Moreover, The NSGA 
overhead decreases, as the size of the coverage item increases. 

Like the results obtained for the coverpoint with N equally distributed 
intervals, i.e., linear distribution, the best NSTD ratio is obtained when the initial 
coverage rate is at 33%. In contrast with the previous use case, the best NSGA ratio is 
also captured when the initial coverage rate is at 33%. 

In contrast with the previous use case, for which the benchmarking model 
generated negative results, the coverage closure goal for this coverpoint type with 
power-of-two distribution was achieved more conveniently using the CAStiG tool. 

 
Figure 5.7 A comparison between the CDV and the CAStiG framework with 33% 

initial coverage rate for the nonlinear coverpoint configurations with “power of two” 
distributed intervals 
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Chapter 6 
 

6 Conclusions 

6.1 Obtained Results 

In Chapter 2, after presenting the state of the art for the IV approaches, I compared the 
main strategies in Table 2.1, and I underlined the potential of automating novel test 
generation using scenario coverage feedback. This is the foundation stone for my 
SL4SRRM-powered CAStiG framework implementation strategy. 
 
In Chapter 3, I highlighted the theoretical considerations for architecting the novel 
SL4SRRM methodology where I designed the basic working models for the training 
and the inference phases. 
 
In Chapter 4, I describe the implementation details for my novel SL4SRRM-powered 
CAStiG framework, which is a tool based on the Keras API [Goo15]. I identified the 
most efficient artificial neural network architecture, and I uncovered that the Adam 
learning model provides the best fitting accuracy and faster convergence. 
 
In Chapter 5, I selected two of the most common coverpoint distributions, and I 
performed a benchmarking process that indicates significant reductions in the total 
number of simulation cycles. I introduce the NSTD and the NSGA performance 
metrics, and the most promising results indicate a reduction of the NSTD score of 
more than 15000 times while the NSGA improvement ratio is more than 3300. 

6.2 Original Contributions 

As the industry pinpoints growing needs for novel and faster methods to 
reduce the costs allocated for completing IC functional verification, my research  
outlines the following original contributions: 

1. In my journal article [Cri21], I review the state of the art in automating 
functional verification and I contribute with outlining a comparative table, i.e., 
Table 2.1. I describe the highlights and lowlights between the identified IV 
solutions that indicate promising results. Moreover, this contribution received 
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credit from the academic community since my journal article [Cri21] is cited at 
least 21 times by other research groups between January 2021 and June 2023. 

2. In my conference papers [CB21, CC21], I address the novel test generation 
using scenario coverage feedback strategy by deploying ANNs as the core 
learning engines. As I highlighted in my literature review [Cri21], there were 
no previous attempts to enable this automation using ANNs. Thus, I took 
advantage of the open-source TensorFlow library [Goo15] and I implemented 
the CAStiG framework described in Chapter 4. Thus,  

a. With article [CB21] I contribute by introducing the novel SL4SRRM 
methodology enabled using ANNs and by proving that the sampling 
function of a linear coverpoint with N = 1000 equally distributed 
intervals can be successfully modeled using a multilayer feedforward 
perceptron. The presented SL4SRRM-based CAStiG framework 
successfully reaches the coverage closure goal for the target case study 
with a small engineering effort. It also indicates the flexibility in 
deploying models for any user-defined verification task. Practically, the 
learning process can be easily parallelized using an ANN for each 
coverpoint of the coverage model. 

b. In article [CC21] I extend my CAStiG framework analysis started in 
[CB21] and I contribute to demonstrating that nonlinear sampling 
functions for coverage bin distributions like power-of-two or min & max 
bins are successfully modeled using resolute ANNs. This paper 
alleviates the problem with novel ML-assisted process optimization 
techniques that enable faster functional coverage closure on nonlinear 
coverpoint models. The obtained performance results indicate great 
prospects for functional verification processes aided by ANN-enabled 
EDA tools. 

3. In my journal article [Cri23], I do a design exploration on a linear and two 
nonlinear coverpoint configurations, I introduce the novel performance metrics, 
i.e., the NSTD and the NSGA improvement ratios, and I contribute with listing 
the benchmarking results that demonstrate the SL4SRRM proof-of-concept 
using ANNs. 

4. In the conference article [VDC23], my co-authors and I integrate the 
SL4SRRM-based engine of the CAStiG framework [CB21] in the AMIQ 
ECTB Framework [VD23]. Thus, I contribute by exploring and listing more 
experimental results on how my SL4SRRM-enabled core performs on a real 
and more complex DUT model. 
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6.3 List of Original Publications 

During this doctoral research program, I published five original papers that target the 
chosen research subject and my initiatives described in this thesis. 

I published the two articles in ISI-indexed international conferences, namely 
[CB21, CC21]. In addition, also submitted article [VDC23] to a non-ISI-indexed 
international conference, namely Design and Verification Conference (DVCON) 
Europe 2023. The article has been accepted by the conference and it will be presented 
on during November 2023. DVCON Europe is a yearly conference that focuses on the 
industry’s state of the art IC design and verification topics and is sponsored by the 
Accellera System Initiative [Acc00]. Moreover, I also published two papers in ISI-
indexed international journals, which are [Cri21, Cri23]. 

In addition to the aforementioned publications, I also filed four research 
reports as part of this research program, namely [Rep1, Rep2, Rep3, Rep4]. 
Specifically, the report referenced in [Rep1] is equated using the manuscript before 
publishing article [Cri21]. Similarly, [Rep2] is equated using the work in [CB21]. 
[Rep3] is equated using the work in [CC21], while [Rep4] is equated using the article 
in [Cri23]. 

The full list of works that target the doctoral thesis subject filed during my 
research program is outlined below. 
 
[CB21] M.C. Cristescu and C. Bob, Flexible Framework for Stimuli Redundancy 

Reduction in Functional Verification Using Artificial Neural Networks, IEEE, 
2021 International Symposium on Signals, Circuits and Systems (ISSCS), 
Jul. 2021, pp. 1-4, doi:10.1109/ISSCS52333.2021.9497443 

 
[CC21] M.C. Cristescu and D. Ciupitu, Stimuli Redundancy Reduction for Nonlinear 

Functional Verification Coverage Models Using Artificial Neural Networks, 
IEEE, 2021 International Semiconductor Conference (CAS), Oct. 2021, pp. 
217-220, DOI:10.1109/CAS52836.2021.9604141 

 
[VDC23] A. Vintilă, S. Dudă, and M.C. Cristescu, An analysis on the impact of AI on 

digital IC verification coverage closure, Design and Verification Conference 
(DVCon) Europe 2023, contribution accepted on the 23rd of June 2023, to be 
presented at the conference on the 14th of November 2023. 

 
[Cri21] M.C. Cristescu, Machine Learning Techniques for Improving the Performance 

Metrics of Functional Verification, Romanian Journal of Information Science 
and Technology (ROMJIST), vol. 24, no. 1, Apr. 2021, pp. 99-116, 
ISSN:1453-8245 

 
[Cri23] M.C. Cristescu, Benchmarking a Smart Framework for Reducing the 

Coverage Closure Time in ASIC Functional Verification, University 
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POLITEHNICA of Bucharest, Scientific Bulletin Series C - Electrical 
Engineering and Computer Science, 2023, ISSN: 2286-3540 (in review) 

 
[Rep1] M.C. Cristescu, “Tehnici de Machine Learning pentru îmbunătățirea 

metricilor de performanță în verificarea funcțională – O analiză a 
literaturii”, Scientific Research Report no. 1, University POLITEHNICA of 
Bucharest, June 2020, equated using the manuscript of article [Cri21]. 

 
[Rep2] M.C. Cristescu, Flexible Framework for Stimuli Redundancy Reduction in 

Functional Verification Using Artificial Neural Networks, Scientific Research 
Report no. 2, University POLITEHNICA of Bucharest, June 2021 equated 
using the manuscript of article [CB21]. 

 
[Rep3] M.C. Cristescu, Stimuli Redundancy Reduction for Nonlinear Functional 

Verification Coverage Models Using Artificial Neural Networks, Scientific 
Research Report no. 3, University POLITEHNICA of Bucharest, June 2021, 
equated using the manuscript of article [CC21]. 

 
[Rep4] M.C. Cristescu, Benchmarking a Smart Framework for Reducing Coverage 

Closure Time in Functional Verification, Scientific Research Report no. 4, 
University POLITEHNICA of Bucharest, June 2022, equated using the 
manuscript of article [Cri23]. 

6.4 Perspectives for Further Developments 

6.4.1 Integrating the CAStiG Learning Core into the ECTB 
Framework 

A first future development is to deploy the use cases described in subchapters 5.2 and 
5.3 on the AMIQ’s ECTB framework [VD21]. Specifically, I identified an interesting 
research opportunity brought by the aforementioned initiative and I decided to 
integrate the ANN-based learning core of my CAStiG tool into the AMIQ ECTB 
architecture. Therefore, the selection of new constraint definitions can now be 
automated using the ANN model introduced with the CAStiG tool.  

After completing the implementation underlined in the aforementioned 
paragraph, together with my co-authors, we described the process in the article 
[VDC23] which was accepted by DVCon Europe 2023 conference and will be 
officially presented on the 14th of November 2023. Still, experiments for generating 
even newer performance results are currently in development and we plan to provide 
preliminary results when the work in [VDC23] will be officially presented. 
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6.4.2 Other Research Directions 

An interesting future development is to improve CAStiG’s ML model of the 
Nonlinear Coverpoint with Min and Max Distribution coverpoint so that coverage 
closure can be reached with a reasonable amount of engineering effort. 

Further analysis pointed out new prospects to extend the CAStiG framework 
capabilities by researching more complex ANN architectures that can fit new 
verification use cases. 

Another future research opportunity is to leverage the SL4SRRM-powered 
CAStiG framework for optimizing more complex functional coverage tasks available 
within the verification phases of industry-level projects. 

One more investigation direction is to combine the strong points of both GA 
and ILP algorithms within a hybrid-like framework. The GA is suitable for improving 
the quality of the training set, while ILP could be involved in modeling complex 
coverage models. 
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