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Chapter 1

Introduction

Radar systems perform well in sensing during any weather condition, either rainy or
cloudy, light, or dark times; hence, they act as primary sensors. In remote sensing,
synthetic aperture radar (SAR) and Inverse SAR are vital for Earth observations and
target detection. Motion, which results from the movement of the platform or target, is
the key to radar imaging [1, 2].

1.1 The field of the doctoral thesis

ISAR provides images of objects that are rotated with respect to the radar. An efficient
image-focusing algorithm is required to generate ISAR images from the echoes of
the raw data. With the advancement of radar technology, imaging has become an
important function of radars. The field of doctoral thesis is utilizing monostatic SAR
data from Sentinel-1 for ocean remote sensing and Inverse SAR imaging by exploiting
mmw-wave and X-band radars. Polarimetric data obtained from radar provides an
opportunity to extract features, delineate targets, and reconstruct images using suitable
polarization under given circumstances. Moreover, the decomposition of polarization
enhances the extraction of properties and the required information. Radar data for
sparse reconstruction is an emerging topic in compressive sensing for ISAR imaging. To
reconstruct image of the target directly from raw data with a limited number of samples
reduces the overhead of radar systems and improves the capabilities of radars to sense
targets with short coherent processing intervals [3].

1.2 Scope of the doctoral thesis

The signal and image processing of SAR and ISAR data is the focus of this thesis. Several
issues are addressed, including estimation of ocean circulation parameters based on
Doppler centroid, SAR data preservation via complex-valued (CV) networks, coastline
and ice-line delineation via constant false alarm rate (CFAR) methods, corporate or non-



corporate target detection via imaging, and compressive sensing for high resolution ISAR
imaging. Future work is to adapt the newly developed parallel computing for along-track
interferometry to advance the bistatic SAR systems for ocean current estimation. Also,
high-resolution imaging of the required targets in unconstrained motion with fewer data
samples will reduce the scanning time of SAR and ISAR systems.

1.3 The original content of the doctoral thesis

The particularly distinctive work presented in this thesis is categorized into three sections.

(i) The first part is a study on the Doppler centroid ( fDC) estimation for ocean surface
current (OSC) retrieval using both Strip-map and TOPS SAR data [4]. Parallel
computing advancement give is opportunity to reduce memory constraints for wide
ocean area Doppler estimates. We developed de-ramping of TOPS data similar to
the SOA methods which is user friendly and easy to adapt [5]. Also, we preserve
Doppler properties of SAR data using novel CV architecture. Experimental and
analytical results prove the practicality of the modified and proposed methodology
for ocean remote sensing.

(ii) The second part is a study of SAR target detection by using CFAR detection
algorithm. A novel method for coastline extraction based on Doppler centroid is
proposed with concept of static coastline paves zero Doppler [6]. Furthermore,
Subaperture (SA) decomposition method is used to generate multiple SA, which
are then averaged to enhance TCR, whereas dual-pol correlation matrix is proposed
for ship detection using CFAR approach. Extending this strategy to ice-cover
extraction provided great results in multi-layer ice-cover extraction using CFAR.
The method is experimentally and quantitatively evaluated for overall agreement
between target and non-target detection.

(iii) The third and last section of the study covered compressive sensing, sparse feature
extraction, and ISAR imaging for target detection. With the use of improved ISAR
wave-number (ω−k) imaging, images can be focused with adequate resolution and
with minimal computing expense. Then, by utilizing ISAR images and dual-pol
H−α decomposition, sparse characteristics of tree targets are retrieved. Finally,
we were able to reconstruct ISAR images using only a limited amount of data
samples thanks to coarse-to-fine (CTF) estimates, which took us very close to
real-time target imaging.
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Chapter 2

Doppler Centroid Estimation for OSC
Retrieval

Accurate estimation of the fDC of the received data is crucial in SAR processing. Poor
estimates introduce noise and ambiguity levels in the processed image, often leading
to a significant impact on image clarity. Precise estimation of the fDC is challenging
because measurements rely solely on geometry, and the received data may contain local
anomalies that hinder the estimation process. An improper fDC estimation can result in
SNR loss, increased azimuth ambiguity, and the loss of specific information, such as
surface current and wind speed.

2.1 Doppler Centroid Estimation

The main focus in this chapter is the use of a 2D convolution filter for the estimation
of fDC based the prevailing algorithms including CDE, SDE, and EB. The relative
movement of the radar or the dynamic scene under observation exhibits Doppler shift,
given as:

fD =−kRadV
π

(2.1)

where kRad is the radar wave-number, and v is the line-of-sight velocity of the target.
The Doppler centroid fDC can be estimated from the SAR processed data. If the area
under observation is stationary, the anormal Doppler shift will be zero. The prevailing
algorithms to estimate fDC either by finding the centroid of power spectrum of signal
in the azimuth direction [7]; or through the phase of auto correlation function [8]; or
correlation of real and imaginary parts of complex SAR data via sign alone.

2.1.1 Correlation Doppler Estimation (CDE)

The CDE method involves an cross-correlation of the SLC image ‘S’ with its shifted
version ‘S∗’ in the azimuth direction ‘∆η’. [4]. By using the sliding window ‘W ’ of



size N ×N locally computed the correlation in the azimuth direction and performed an
averaging operation in the range direction, The phase ‘φ ’ of correlation term C(η ,τ) =

S ·S∗ is estimated as:

φ(η ,τ) = arg{⟨S(η ,τ)S∗(∆η ,τ)⟩} (2.2)

Based on the pulse repetition frequency (PRF) and phase correlation function, the fDC is
calculated as follows:

fDC(η ,τ) =−PRF
2π

φ(η ,τ) (2.3)

2.1.2 Sign Doppler Estimation (SDE)

The Sign Doppler Estimation technique utilizes the correlation. The underlying principle
of this approach revolves around harnessing the "arcsine law" inherent in a Gaussian
process.

Y = sin
(

π

2
R [II, IQ,QI,QQ]

)
(2.4)

where R contains correlation of each real (I) and imaginary (Q) parts, the sign function
of signal Z(t) is given as:

Z(t) =

{
1, f or Y (t)≥ 0

−1, f or Y (t) < 0
(2.5)

since Z(t) only takes value of +1 and -1 hence it is called sign of Y (t). To estimate
the Doppler, first obtain 4-sign correlations including II, IQ,QI,and,QQ, then derive
corresponding correlation coefficients and complex correlation coefficients, given as:

R(k) =
1
2
(ρII +ρQQ)+ j

1
2
(ρIQ −ρQI) (2.6)

finally convert argument of R(k) to fDC as given below:

f SDE
DC =

PRF
2π∆δ

× (arg{R(k)}) (2.7)

2.1.3 Energy Balancing (EB)

Step-1 To estimate the fDC by using energy balancing method, at first, calculate average
power spectrum S(n) in the azimuth direction.
Step-2 To achieve the reference function R( f ) and ensure EB is attained, the circular

4



cumulative summation is applied, so that the energy of spectrum equals on both sides:

R( f ) =


−1, for 0 ≤ f ≤ PRF

2 ,

+1, for − PRF
2 ≤ f ≤ 0,

0, otherwise.

(2.8)

Step-3 As R( f ) is in the continuous form, circular correlation can be determined as
follows:

C(n) = IFFT{FFT (S(n))× con j(R(n)} (2.9)

Step-4 Finally, through the circular correlation information, fDC is estimated as:

f EB
DC =

NDC

N
×PRF (2.10)

In above equation NDC is zero crossing point of circular correlation, while N belongs to
length of azimuth data.

2.1.4 Ocean Surface Current (OSC) Retrieval

The OSC is derived from fDC, incident angle θ , and wave number kr, given by [9]:

UD =−π fDC(η ,τ)

kr sinθ
(2.11)

while calculated value of kr is 113.28 m−1 for Sentinel-1.

2.2 Results and Conclusion

Experiments were conducted to evaluate the CDE, SDE, and EB techniques, compare
their performance, and subsequently derive ocean surface currents based on the estimated
fDC history. Sentinel-1 SAR data with SM mode and VH-polarization was utilized for
this task. A 2D sliding window of 64×64 pixels is used to estimate fDC with the help

Figure. 2.1 Signature of Doppler centroid for given SAR scene obtained by CDE, EB,
and SDE methods.
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Figure. 2.2 Retrieved ocean surface current based on Doppler Centroid given in Fig. 2.1.

of a 2D convolution filter. The results are confined to the primitive baseband range
(±PRF/2). The positive values indicate that the Doppler is moving toward the platform.
The fDC of moving ships in the given SAR scene alters the homogeneity of the Doppler
due to spectrum balancing since the back-scattered values of point targets (like ships)
are greater compared to ocean water pixels. Ocean surface currents are retrieved from
fDC history and the range of incident angles. The current fluctuates up to 3 m/sec,
depending on the Doppler’s nature. However, the (+ and -) signs depend on the fDC

information. The current values are altered in the EB method due to the presence of
obvious moving targets in the SAR scene, as can be noticed in Fig. 2.2(b). Based on the
given experiments, it is important to note that while both CDE and SDE perform well
for distributed and non-homogeneous scenes, the EB method demonstrates favorable
performance primarily in homogeneous scenes.

Three SOA techniques are implemented to estimate fDC to extract ocean surface
current, and comparing their performance numerically. The CDE, and SDE methods
achieve a stable fDC within the primitive baseband range (±PRF⁄2). The difference
between all methods is dramatic for a reason: the EB method dominates fDC due to
the presence of point targets in the scene. It is concluded that, for distributed and non-
homogeneous SAR scenes, both CDE and SDE perform very well, and the EB method
performs nicely either for point targets or homogeneous scenes. Its estimation decreases
when homogeneity is destroyed in a scene with prominent point targets.
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Chapter 3

De-ramping of TOPS Data and CV
Network to Preserve SAR Properties

The spectral characteristics of a single-look complex interferometric wide (SLC-IW)
swath and terrain observation by progressive scan (TOPS) are significantly different from
those of a strip-map (SM). In TOPS mode, phase information is preserved, and without
de-ramping, ramps appear for the components extracted from azimuth information,
namely the fDC. Therefore, a solution is required to overcome this issue while exploiting
TOPS SAR data. To eliminate the phase term, a chirp signal is generated for the purpose
of de-ramping. The method for de-ramping is then discussed, proposing an efficient
utilization of the SNAP tool to achieve this goal.

3.1 On the De-ramping of TOPS SAR data

To extract the preserved phase term, it is essential to move spectral component of SLC-
IW to baseband. The phase term needs to be multiplied in time domain with the SLC
signal SSLC. The phase term for de-ramping is defined as:

φ(η ,τ) = exp{(−jπkt(τ))(η −ηref(τ))
2} (3.1)

where, reference time ηref(τ), and Doppler centroid rate kt(τ) are function of range
samples. After evaluation of necessary parameters, de-ramping to cancel quadratic drift
can be achieved by simply multiplying phase term with SLC signal.

Sd(η ,τ) = SSLC ×φ(η ,τ) (3.2)

The ramps from TOPS data are eliminated using a chirp signal, resulting in the acquisition
of baseband data as depicted in Fig. 3.1 (a).
Alternatively, de-ramping can be achieved in the SNAP tool using the Sentinel-1 TOPS

operator [5]. The complete step-by-step methodology is presented in Fig. 3.1 (b). As



Figure. 3.1 (a) De-ramping by using ESA method. (b) De-ramping by using SNAP tool.

TOPS consists of multiple swaths, first split the required swath and apply “deramp-
demod” operator. To compensate the azimuth null spacing (to avoid residual ramps)
between each burst, the operator “deburst” greatly helps in achieving a refined scene
and removing stripes that impede feature extraction. As the main focus is solely on
ocean Doppler parameter estimation, the SNAP tool assists in masking out the land area,
thereby enhancing the accuracy of our estimates. The land-ocean mask is applied to
avoid Doppler effect caused by dynamic objects present on the land.
The ocean circulation parameters in this chapter are extracted from complex SAR data
that are data-driven, whereas the parameters in the benchmark/reference are predicted
from ocean product (OCN) information and based on the polynomials given in the
metadata . Doppler centroid fDC and OSC estimation are given in chapter-2. Thus, OSC
is used to retrieve significant wave height (SWH) in image domain based on empirical
relationship given as:

HS = 4

√
1
T

T

∑
i=1

(U (i)
D )2 (3.3)

where, HS is an important parameter for seashore engineering. The SWH is the average
wave height in a given period of time T, which is the azimuth time span of data under
observation.

The de-ramping is done so far to eliminate quadratic drift of phase term by chirp
signal or using SNAP tool. When phase term φ(η ,τ) is multiplied with original SLC
signal SSLC the data moves to baseband domain, as shown at the bottom of Fig. 3.1.
The ocean circulation parameters include OSC and, SWH. The OSC is evaluated using
fDC estimated by the CDE method, which perfectly matches the benchmark data shown
in Fig. 3.2 The RSV is in a good match and reaching up to 2.5 m/s in the core of the
stream. The surface velocity on the ground is zero as land is masked and paving zero
doppler. The reasonable parameter estimates demonstrating the efficacy and necessity
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Figure. 3.2 OSC (m/s) derived from data-driven Doppler centroid (b) SWH (m) derived
from RSV.

of de-ramping for the SLC-IW TOPS data. The error estimation lacks in this part, and
some physical parameter remain to be investigated regarding ocean current field, which
will be carried out in subsequent section of this chapter.

3.2 CV network for TOPS SAR data Preservation

The applications of the deep learning is increasing rapidly. Development of the Complex-
Valued (CV) networks that can process CV data has opened a lot of opportunities for
utilizing the immense capabilities of deep networks for CV data, including Synthetic
Aperture Radar (SAR). The competency of the CV deep architectures for preserving the
properties of the original SAR data and how it affects the physical parameter’s retrieval
is evaluated in this section. The obtained OSCs are compared to demonstrate the ability
of the CV deep architectures to learn the data model and preserve the original Doppler
information in SAR data.

A fully CV network is used in this study to reconstruct the CV SAR images. All the
layers in this network, including the convolutional, pooling, and batch normalization
layers, are in the complex domain. Moreover, the weights and biases in the neurons, and
the activation functions are complex-valued. Furthermore, a CV backpropagation, based
on stochastic gradient descent, is used for training the CV autoencoder. However, the
loss function remains in the real domain to minimize the empirical issues [10].

All the mathematical operations in the CV network are performed in the complex
domain. For instance, the convolutional layer, which is an important component of
deep networks and is used in various deep architectures to extract discriminant latent
features from the input data, is applied in the complex domain. The output of the
convolution, y(l+1)

i ∈CW2×H2×l is computed by the convolution between the input feature
map from the previous layer, X l

iC ∈C(W1×H1×C), and the weights of the neurons, w(l+1)
iC ∈

CF×F×C×l , and then adding a bias, b(l+1)
i ∈ Cl .

9



In order to train the CV network, the Wirtinger calculus is used to perform the
backpropagation in the complex domain [11]. According the the Wirtinger calculus,
the partial derivatives of a complex function f (z) with respect to the complex variable
z= x+ jy∈C, (x,y)∈R2. The architecture of the developed CV autoencoder consists of
two main parts, an encoder and a decoder. The encoder is used to encode the input SAR
image and create the bottleneck embedded features. Later, the decoder part reconstructs
the CV-SAR image from the embedded features. The skip connections between the
encoder and decoder are used to reduce the risk of degradation in the deep network and
ensure an uninterrupted flow of the gradients in the network [12]. Both of the polarization
channels of the CV-SAR data are fed into the network as patches of 100×100 pixels.
The CV network reconstructs both of the polarization channels at the same time.

We evaluate the performance of the CV autoencoder and its ability to preserve the
original Doppler centroid information. The CV autoencoder, trained in [12], Sentinel-1
StripMap (SM) mode data with HH and HV polarization channels (Different from the
dataset used in this study) is used. The de-ramped IW data with VV and VH polarization
channels is reconstructed with the trained network. The results from this experiment are
annotated as reconstructed (R).

The network is retrained, using the SLC-IW TOPS SAR data with VV and VH polar-
ization channels. The network is trained for 10 epochs, with batch size 10, learning rate
0.001 and Mean Square Error (MSE) loss function with 90% of the data as the training
set. Later the retrained network is used to reconstruct the IW data with VV and VH
polarization channel (similar to the training data). The results from this experiment are
annotated as reconstructed-Trained (RT). Based on our experiments the VH polarization
channel is better for OSC estimation. After reconstruction of the CV-SAR data with the
CV autoencoder, the Correlation Doppler Estimation (CDE) method is used to estimate
fDC and retrieve the OSC. The land is masked out using SNAP tool so that not to search
for Doppler on land. Nevertheless, the spatial resolution and limits are consistent in all
three experiments to visually observe variation in the estimated OSC signatures.

The fDC and OSC estimated from the original SAR data annotated with O, the recon-
structed SAR data from the [12] network annotated with R, and the reconstructed SAR
data from the retrained network annotated with RT are shown in Fig. 3.3. Comparing
the fDC and OSC estimated from the [12] network (Fig.3.3 (b) and (e)) with the original
SAR data (Fig. 3.3 (a) and (d)), a noticeable difference in the estimated ocean circulation
parameter is visible. The reconstructed CV SAR data, despite having the similar OSC
pattern, tends to estimate lower values for the current and weaker Doppler. However,
when the CV autoencoder is retrained using the SLC-IW TOPS SAR data, the estimated
fDC and OSC (Fig.3.3 (c) and (f)) show a very high resemblance with the results from
the original SAR data. The high resemblance between the ocean circulation parameter’s
estimation in the original and the reconstructed SAR data demonstrates that the CV
autoencoder has preserved the SAR data model even without retraining (experiment

10



Figure. 3.3 (a), (b), and (c) calculated fDC over the study area and (d), (e), and (f)
estimated OSC from the Original (O), Reconstructed with the [12] network (R), and
Reconstructed with the retrained network (RT) SAR images, respectively.

annotated with R). Obviously, retraining the network with the similar type of the data (IW
and VV-VH Polarization channels) has improved the performance of the CV autoencoder
significantly.

In this study, the competence of the CV auto-encoders to preserve the original
properties and the physical model of the CV-SAR data and how it influences the physical
parameter’s retrieval from these data is evaluated. To this end, a CV autoencoder is
trained to reconstruct the CV-SAR images and the fDC and OSC parameters extracted
from the original and reconstructed SAR data. The comparison between the obtained
parameters demonstrated that the CV autoencoder successfully learned the SAR data
model and preserved the original Doppler centroid information to a good extent.

11



Chapter 4

Polarimetric SAR Data for Target
Detection Based on CFAR

Coastline extraction, marine-time target or traffic monitoring, and ice-cover delineation
by exploiting optical images are challenging during adverse weather conditions. As a
matter of fact, collecting in-situ data is expensive and not always possible. Consequently,
CFAR approaches have a versatile scope for SAR-based target identification. The
matrix for target delineation (i.e., fDC,σ

0, and ρ) undergoes an ensemble averaging
process, following which the CFAR technique is applied to determine the threshold
value essential for distinguishing between target and non-target entities. Subsequently,
an image processing block is employed to precisely quantify the boundaries or edges of
the desired targets.

4.1 Coastline Extraction using fDC Images

A novel coastline extraction method is proposed based on classic coastal dynamic
variation, such as fDC, since coastline is static and has zero Doppler with respect to the
dynamic sea-state. The Doppler parameter is used to delineate coastlines when neither
in-situ data nor cloud-free optical images are available. The results of the Doppler-
based novel technique allow us to investigate the impact of natural hazards on coastline
degradation [6].

The overall impression is that the coastline is static with respect to the sea and paves
zero doppler rate theoretically. Thus, dynamic and static natures easily distinguish the
water and land. The fDC is estimated by our CDE method given in Chapter 2. By
using the sliding window ‘w’ of size 9×9 locally computed fDC. The next step is to
extract the coastline while enhancing the land and water separation. Estimated fDC

is set to its absolute values for the sake of simplicity to use a single threshold value
| f [V H]

DC |= | fDC(η ,τ)|. The CFAR method is applied over ROI which intends to provide
a hetero-logical image from f [V H]

DC at 2σ to clearly discriminate between land and sea.



Figure. 4.1 For gien dataset, rc, σpq, σqq, and fDC, closely follow Gaussian, inverse
Gamma, Gamma, and Burr distributions respectively.

Figure. 4.2 Row one represents extracted coastline maps of Sentinel-2 (S2), | fV H
DC |, rc,

σpq, and σqq with their respective imagery over ROI related to the scene collected.
Coastline map of S2 (green) is overlapped with | fV H

DC | (magnetic), rc (red), σpq (blue),
and σqq (black) as shown row-2.

For comparison, coastline extraction is carried out using SOA the correlation matrices
including dual-pol, co-pol and cross-pol, (rc = ⟨|SV H | · |SVV |⟩, σpq = ⟨|SV H |2⟩, σqq =

⟨|SVV |2⟩). The given relationships follow Inverse Gamma, Gamma, Burr and Gaussian
distributions to obtain threshold using CFAR method as shown in Fig 4.1 [13].

The estimated | fDC| is influenced by dynamic bragg waves, and medium scale
variations. The empirical distribution for fDC over the smooth water region is overlapped
with theoretical Gaussian distribution. However, for the different estimation matrix and
sea-state conditions the value of threshold ‘TCFAR’ and distribution both vary from data
to data. There exist false alarms after applying ‘TCFAR’ in fact few pixels on the ocean
area have zero Doppler, so to discard these false alarms it involves former approach
σpq to filter out zero Doppler pixels over water. This criterion was chosen to isolate the
variation caused by the sea dynamics and effectively extract the coastline.

The detected coastline maps based on the above experiments are given in Fig. 4.2.
The maps of coastline obtained from | fV H

DC | ,rc, and σpq, having minimal variation with
similar maps, besides σqq maps are erroneous due to the impact of lower incidence angle.
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Table 4.1 Quantitative analysis based on overall agreement (OA)

OA
Comparison S2 vs | fV H

DC | S2 vs rc S2 vs σpq S2 vs σqq

Land 0.3414 0.3418 0.3447 0.2524

Water 0.5799 0.5792 0.5693 0.6294

Land + Water 0.9214 0.9210 0.9140 0.8818

The extracted coastline maps of proposed | fV H
DC | and σpq one of the SOA method in

red and blue colors, respectively, are overlapped to quantify the accuracy of two methods,
and a good agreement can be observed. Sentinel-2 (S2) image accurately detect the
coastline and small water target, coastline map is highlighted with green color given in
Fig. 4.2 row one. To quantify the performance, the overall agreement (OA) is computed
between S2 and both the proposed and SOA methods as given in Table 4.1 [14]. The
total number pixel classified as sea, land, and both sea + land. Experimental values of
pixel classification for land and sea both together, show that | fV H

DC | performs robust as rc,
σpq, however, σpq is under influence of incidence angle.

The impacts ocean circulation parameters on the coastline’s structure are described.
The datasets are collected at various intervals to accurately predict the impact of Doppler
parameters on coastlines. Variations in physical structures are observed on the coastlines.
The coastlines from two different dates shows that coastline is facing cuts and the sea
state is slightly rough, which is an impact of high Doppler parameters.

4.2 Sub-Aperture Decomposition for Ship Detection

The contrast between ship targets and the surrounding sea can be improved in SAR
images by splitting bandwidth in the sub-apertures (SAs) to attain high azimuth resolu-
tion. This section describes SA decomposition for the detection of moving ships. The
proposed dual-pol SAs averaging method employs the CFAR approach followed by the
statistical Gamma (Γ) distribution to determine the threshold value for distinguishing
ships and water. Furthermore, the ship’s velocity parameter in the azimuthal direction is
estimated based on SAs displacement.

To achieve high azimuth resolution, the SA replaces the real antenna aperture by
processing the signal along the azimuth dimension. The concept of SD generates SA
images synthetically, which further optimize object detection [15]. The produced SAs
are averaged for both polarizations for ship detection. The modulus of the unnormalized
correlation between co-pol and cross-pol channels is defined by correlation matrix r =
⟨|S′

VH| · |S
′
VV|⟩, given that; S

′
VH = 1

N ∑
N
i S(i)VH, and S

′
VV = 1

N ∑
N
i S(i)VV. Where S

′
represents

averaging of SAs for each polarization, N is number of SAs.
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The framework of the automatic ship detection algorithm uses CFAR approach, the
empirical distribution of smooth water is overlapped with theoretical distribution. The
generalized Gamma well approximates the empirical statistical distribution of r. The
purpose of developing automatic threshold detectors is to keep the probability of a false
alarm constant. Threshold, TCFAR = Γ(1−Pfa,

µ2

σ2 ,
µ

σ2 ), where µ , and σ are the non-
negative scaling parameter, and standard deviation respectively. The probability of false
alarm (Pfa = 10−6 ) for the estimation of TCFAR is given as: Pfa =

∫ TCFAR
0 PDF(r(w))dr,

where r(w) represents water clutter. Once the logical image is obtained, the pixel-by-pixel
ship target is extracted using the sobel edge detection algorithm.

The ship velocity is obtained with the SA displacement method, which utilizes
the peak correlation value and pixel displacement, given as; VS = ∑

N
i=1

ri∆
i
xSAzi

TSA
/∑

N
i=1 ri,

where ri is the cross correlation of two SAs, TSA is synthetic aperture time, and ∆i
x is

displacement in azimuth where SAzi presents its pixel spacing. The SAR aperture, divided
into three SAs, is reconstructed using three Hamming windows h(w); therefore, the SD
produces multiple SAs from the original SAR. The SAs are averaged in their respective
polarizations, and a dual-pol correlation metric ‘r’ is adapted for ship detection, as shown
in Fig. 4.3(a). The empirical distribution of the r image is overlapped with theoretical
gamma (Γ) distribution, as shown in Fig. 4.3(b). Then, the obtained value of TCFAR

discriminated between the sea and ship to display in the form of a binary image, as
shown in Fig. 4.3(c). Finally, the Sobel edge detector provides boundaries to identify
ships and water boundaries, and by overlapping an amplitude image and the overall
extraction results, the detected ships are shown in yellow in Fig. 4.3(d).

Eigenvalues (λ = ∑
2
i=1 piλi) provide the total size or canopy information of the target.

Therefore, the ship size obtained by the proposed SAs averaging method is compared
with λ to estimate the accuracy of both methods, as shown in Fig. 4.3(e). The ship
sizes obtained from the Eigen value (in blue) are compared with the proposed approach
(in red). Both techniques provide approximately reliable ship sizes with 90% accuracy.
Displacement in SAs does not impact actual sizes, but the choice of window size does.

Figure. 4.3 (a) r-image, (b) empirical and theoretical distribution of water region, (c)
binary image to discriminate between ship and water, (d) ship detection result of the
overall method, and (e) comparison of ship size obtained by λ and r-image.
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4.3 Ice-cover Delineation using SAR and Optical Data

Remotely sensed satellite imagery plays an important role for the monitoring of glaciers
and ice sheets that are difficult to observe from the ground because of their huge magni-
tude and severe environmental conditions. SAR is a reliable source for ice monitoring
because of its frequent revisit times. Therefore, this section focuses on an unsupervised
method for extracting ice cover by exploiting dual-pol Sentinel-1 ground-detected SAR
data over Devon Island, which is surrounded by oceans. A CFAR detector was adapted
with the theoretical “Burr” distribution to derive the CFAR threshold value to delineate
the ice cover. The ice-cover extraction accuracy of the proposed matrix and the SOA
single-pol matrix were meticulously compared with the ice cover detected by Sentinel-2
data.

Data preprocessing was excluded to determine the effectiveness of the method. Dual-
pol SAR data with a correlation metric (ρ) is used for ice cover detection given as:
ρ = ⟨SHV ·SHH⟩. Speckle noise can be reduced by spatial filtering. Therefore, using a
sliding window of size 15× 15 to locally compute the ensemble averaging of spatial
information, where ⟨·⟩ is the spatial mean filter. Subsequent step is to search for the
empirical distribution across the ice region to align with the theoretical distribution.
The CFAR threshold is calculated from the patch of ice region as the probability PDF

of the Burr distribution (β ), as follows: TCFAR = β [P
− 1

α

fa − 1])
1
µ , where µ and α are

non-negative shape parameters, and β is a non-negative scale parameter. Probability
of a false alarm (Pfa) for the estimation of TCFAR based on Burr distribution is given

as; Pfa =
∫

∞

TCFAR

αβ α µρ
(µ−1)
i

(β+ρ
µ

i )
α+1 dρ, ρ > 0, where ρi represents the ice clutter. Hence, the

TCFAR value correctly discriminate ice and non-ice targets. Once the logical image IL

is obtained, the pixel-by-pixel targeted ice is extracted using the Canny edge detection
algorithm. The results are compared with co- and cross-polarized correlation matrices,
namely σHH = ⟨SHH ·SHH⟩ and σHV = ⟨SHV ·SHV⟩ respectively [16]. When comparing
the results with in situ data, and two types of data have different resolutions, to facilitate
a meaningful comparison, a co-registration method has been developed in the SNAP
toolbox to align both data products to the same resolution.

The application of this research is ice-retreat estimation. To estimate the velocity
or retreat of ice cover between two different dates, two points are selected. First, the
point of the first ice line that is farthest from the second line is selected, and the distance
between these two points is measured in meters. Second, the point of the second ice line
closest to the first line is selected, and the distance between these two points is measured
in meters. Finally, calculate the retreat by dividing the Euclidean displacement by time
span (day). The retreat velocity VR is given by:

VR =
||XC −XF ||

TS
=

√
(XC1 −XC2)2 +(XF1 −XF2)2

TS
(4.1)
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Figure. 4.4 (a) Google Earth image view of given ice cover. (b) Empirical distribution
of ice overlapped with the theoretical Burr distribution. (c) Ice-cover detected by
ρ, σHH , and σHV , and (d) NRCS of the given matrices, where the proposed matrix
showed an improved NRCS for better ice cover extraction.

Figure. 4.5 Homogeneous patch of Ice and terrain pixels to quantify accuracy of each
matrices (b) ρ −σHV (c) ρ −σHH, and (d) ρ −S2.

where XC, XF , and TS are the closest points on ice line 1, the farthest points on ice line
2, and the time span per day, respectively. The methodology is tailored to handle the
unique characteristics of the clutter present in ice- or ice-infested bodies. The empirical
and theoretical distributions were derived from an ice region, providing insight into the
statistical properties of the data. The ice region paves the burr distribution; therefore,
CFAR for this distribution was implemented. The ice cover was delineated with great
precision using the proposed method with S1 SAR data, as shown in row-1 of Fig. 4.4. In
contrast, Fig 4.4 (a). Google earth image shows a sheet of the ice that is obtained across
Devon Iceland. Fig 4.4 (b) presents the empirical distribution followed by theoretical
Burr distribution over ice region to extract Ice-cover. Fig 4.4 (c) shows ice cover extracted
using ρ, σHH , and σHV , the ice edges are quantified by the Canny edge detector and
overlaid geocoded image to illustrate the overall process. The NRCS plots for each
matrices are given in Fig 4.4 (d), where ρ shows an improved NRCS.

A patch of ice (white) and terrain (black) pixels in Fig. 4.5(a) quantifies matrix
accuracy. In (b), ice-terrain line differences are shown for ρ and σHV, while (c) displays
them for ρ and σHH. This variation arises from different matrices. Yet, (d) highlights a
distinct S1 (magenta) to S2 (red) displacement, linked to dataset time difference, offering
a retreat velocity estimation opportunity.
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Chapter 5

Inverse SAR Image Reconstruction and
Sparse Feature Extraction

With the advancement of radar technology, imaging has become an important function
of radars. Inverse synthetic aperture radar (ISAR) technology provides images of objects
that are rotated with respect to the radar. This chapter encompasses three distinct
applications: ISAR imaging, sparse feature extraction, and CS-ISAR imaging [1, 3].

5.1 ISAR Imaging Assessment

A monostatic model of ISAR was deployed to collect radar backscattering data in the
millimeter (mm) wave band (67–110 GHz) using targets with circular, rectangular, and
non-canonical shapes. The ISAR experiments were performed to assess the imaging
performance of the three methods, including wave-number (ω − k), spherical wavefront
compensation, and back-projection. To evaluate the methods, we calculated the point
spread function (PSF) for the mm-wave wire’s impulse response. There is a trade-off:
the ω − k domain loses resolution compared to the SWFC and BP methods but can
obtain a satisfactory image at a lower computational cost [17].

The modified ω − k method is computationally efficient because it uses a built-in
function for 2D interpolation and an inverse Fast Fourier Transform (FFT) [18]. The
interpolation process removes range cell migration (RCM) and range-azimuth coupling.

ISARω−k =
N

∑
i

interp2(
[
KX ,Y

]
, Sh(ω,k),

[
Kr,θ

]
) (5.1)

where KX and KY are grid dimensions, Sh is pre-processed ISAR data, and Kr, θ is polar
transformation function.

In the SWFC method, the data from all turntable angles is gathered to compensate for
the wave fronts. The SWFC is given as; Sψ =

√
(Rcosφcosθ +X)2 +(Rcosφsinθ +Y )2,

where φ is the incidence angle between radar and target ‘R’ is the distance from target to



radar. X , and Y are elements of a predefined 2D grid. The final complex ISAR image is:

ISARSWFC =
∫

∞

0

∫ +π

−π

Sh( f ,θ) exp
(
2 jk×Sψ

)
d f dθ (5.2)

where k = 2π fvec
c , and fvec is the frequency vector for a given range of bandwidth, and f

denotes data samples.
The core idea of the BP approach is to subtract the distance between the radar and the

target and compensate for it in terms of the phase for coherent accumulation, avoiding the
distance migration: S(x,y) =

∫
y
∫

x f (x,y) exp(− j2kR(xsinθ − ycosθ))dxdy. Where,
f (x,y) is the function of range-compressed raw data.
Given that, Sζ =

√
(Rcosφcosθ −X)2 +(Rcosφsinθ −Y )2 is the distance compensation

in terms of phase between radar and the image grid. The back-projected ISAR image is
given as:

ISARBP =
∫

x
Interp1

([
KX ,Y

]
, fh(x,y),Sζ

)
∗ exp

(
− j

4π fvec

c
×Sζ

)
dx (5.3)

The capabilities of ISAR methods are expressed in terms of “Point Spread Function"
(PSF), utilizing the impulse response of a mm-wave wire coupled between the radar and
the processing unit. Nevertheless, the PSF is the reconstructed image of a single scatterer
(wire) located at the origin of the coordinate system. This compare the capabilities of the

Figure. 5.1 The imaging results of Cylindrical, Rectangular, and Non-canonical targets.
(a) presents the results obtained using the ω −k method, (b) presents the results obtained
using the SWFC method, and (c) validates the results attained by BP method. (d) The
-25 dB PSF images for the IR of mm-wire for ω − k domain, SWFC, and BP methods.
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Figure. 5.2 ISAR images obtained with 70% of the data (compressed or sparse at 30%)
after a thresholded 2D-DWD. (a) ω − k, (b) SWFC, and (c) BP.

implemented methods to achieve sub-millimeter spatial resolutions. Moreover, the ability
of the aforementioned ISAR methods to handle compressible data was evaluated. The
2D discrete wavelet decomposition (2D-DWD) is applied to make the data compressible
in both the range and cross-range dimensions by reducing dimensionality [19].

The imaging results for ω − k method are shown in column (a) of Fig. 5.1. The
imaging results are in close correspondence with the ground truth in terms of size and
shape. The ω − k method has an effective ISAR image reconstruction that remains
independent of the target-to-radar distance. In particular, compared to the traditional
SWFC and BP algorithms, as shown in Fig. 5.1 columns (b) and (c), the number of
incorrectly reconstructed points was reduced. The PSF images of the SWFC and BP
methods have perfect concentrations at the center, as shown in Fig. 5.1 column (d). The
imaging was focused with respect to the center, and the side lobes were rapidly reduced.

In contrast, the PSF image of the ω − k domain shows relatively high side-lobe
values. However, millimeter-wave imaging, with a lower computational cost and ample
resolution, has great potential for object detection in various fields. Fig. 5.2 presents the
results of the performance analysis of ISAR imaging for a complex non-canonical target
using 30% compressed or sparse data obtained after 2D-DWD. This shows ω − k drops
in imaging because of the mitigation of useful coherent processing intervals (CPIs) as
compared to SFWC and BP. However, by applying any CS technique, the resolution can
be restored, resulting in a better-focused, super-resolved image compared to this one.

5.2 Scattering Properties Estimation of ISAR Images

The dual-pol decomposition technique enables precise retrieval of scattering mechanisms
(H-α), allowing for various applications. A novel case study of 2D ISAR images for
scattering property estimation was presented. Eigenvector descriptors were employed
to identify the scattering mechanism based on the Lee and Pottier H-α plane. This
mechanism was presented for the first time in the ISAR setup. Given that decomposition
enhances the target characterization for studying scattering mechanisms, the application
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of the Radar Vegetation Index (RVI) demonstrates how dual-polarized ISAR images can
be used for vegetation identification [20].

The measurements were conducted using the experimental radar COBRA on the
turntable on the Fraunhofer terrain with a quasi-mono-static setup paving VV and VH
channels. The received channels are at a certain angular distance from the targets and
have a certain delay that is compensated by ∆τ = c×R

4π fc
, where R and fc are radar to target

distance and carrier frequency. The 2D ISAR imaging is attained by using the SWFC
method, as discussed in Section 5.1. All turntable angles were gathered to reconstruct a
2D ISAR image. For both the polarization-focused ISAR images are SVV and SVH.

The coherent decomposition of dual-pol provides eigenvalues and eigenvectors of
the coherence matrix [21]. The scattering vector for dual-polarized ISAR data are

represented as kDp =
[
SVV SV H

]T
. The 2 × 2 coherence matrix allows us to obtain

the entropy (H), alpha (α), and span (λ ) images for trees. H −α decomposition can be
expressed by exploiting the non-negative eigenvalues (λi, i = 1,2) and the corresponding
eigenvectors, and entropy is expressed as:

H =−
2

∑
i=1

(pi)log2(pi),where, pi =
λi

λ1 +λ2
(5.4)

where the mean scattering angle (α) and span or mean magnitude of the mechanism (λ )
are given as:

α =
2

∑
i=1

piαi,and λ =
2

∑
i=1

piλi (5.5)

while α , and λ provide the nature of scattering and the span or size of the target,
respectively. Radar scatters are greatly influenced by vegetation type, structure, moisture,
and phenology; thus, the RVI is defined, which takes these parameters into account and
is very useful in vegetation monitoring at a large scale.

RVI =

(
⟨|SV H |⟩

⟨|SVV +SV H |⟩

)1/2(
4×⟨|SV H |⟩

⟨|SVV +SV H |⟩

)
(5.6)

RVI is a scattering randomness measure that ranges from 0 to 1, but it is less sensitive to
radar measurement geometry. For smooth surfaces, the RVI is close to zero, it increases
as the vegetation grows. The RVI results are compared with DpRVI that relies on two
parameters and enhances estimates. DpRVI = (1−mDp ·β ), 0 ≤ mDp ≤ 1, where β is
eigen value spectrum of T2 and mDp is degree of polarization. Fig. 5.3 upper image
demonstrates the measurement setup and the turntable where tree targets are placed. Fig.
5.3 (a) shows the λ mean magnitude of the 2D ISAR images of the trees. In Fig. 5.3 (b),
the higher entropy values indicate very low-amplitude backscatter, where tree canopy
areas show sparse vegetation. The presence of ‘α’ (mean angle) values in dense leaf
areas, where most values are greater than 45◦, represents multiple surface scattering, as
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Figure. 5.3 Top row is the Geometric model and targets installed for ISAR setup. (a)
ISAR imagery of trees. (b) Entropy of tree scatterings. (c) α represents the mean
scattering angle. (d) Spatial signatures of RVI based on partial polarization. (e) Spatial
signatures of RVI based on degree of polarization.

Figure. 5.4 H −α decomposition shows that scattering mechanism falls in zone 1, 4,
and 7 based on Lee and Pottier’s method.

shown in Fig. 5.3 (c). The RVI signature was obtained using dual-pol ISAR images,
and its randomness value ranged between 0 and 1, as shown in Figs. 5.3 (d) and 5.3 (e).
RVI is estimated using a 5 × 5 boxcar filter via two approaches, one relying only on
polarizations and the other on the degree of polarization and eigen-spectrum, respectively.
The spatial signatures were qualitatively the same, indicating that the ISAR images can
be utilized for RVI estimation. Nevertheless, based on the H-α plane, the scatterings
for each case appear in zones 1, 4, and 7, which correspond to high-, medium-, and
low-entropy vegetation multiple-scattering zones, respectively, as shown in Fig. 5.4.
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5.3 CTF Estimation for CS-ISAR Imaging

Compressive sensing (CS) enables imaging with less data assuming sparsity in certain
domains. We proposed a ground breaking coarse-to-fine (CTF) estimation method that
reconstructs images with fewer signal supports over fine grids. Owing to the explicit
storage and usage within sparse reconstruction, the sensing matrix (SM) is resource-
intensive, even for small problem sizes. To alleviate this issue, the CTF procedure
discards a certain number of columns from the SM as the reconstruction progresses from
coarser to finer scales (X1/F = 22F ).
The reconstruction process involves progressively restricting the signal support, thus
eliminating a specific number of columns from the SM as the algorithm transitions
from one factor to another. The proposed technique does not require a pre-processing
chain and introduces a direct reconstruction solution that strategically considers both the
computational cost and imaging resolution. The CTF strategy discards the maximum
number of unwanted frequencies in the fine stage, reconstructs the image with fewer
samples, and achieves a high resolution with negligible clutter. Let X be a coarseness-
scale representation. The scale size X1/F ∈CM×M increases by a factor of 22F , where
F ∈ {0.25,0.5,1} is the coarseness factor (Coarser, Coarse, Fine).
Fig. 5.5 shows the scheme for CTF estimation restricted to the feasible signal-support

regions. The mask at the coarser level (X4) was obtained by identifying the signal
support, which was then transformed into an initial mask for the next coarse level (X2),
and only the feasible signal supports were preserved at a fine level (X1). Thus, the fine
stage utilizes a few samples from the image vector S and forces the clutter regions to

Figure. 5.5 CTF estimation flow graph. Selection of the target mask from the coarser
(bottom) to coarse (middle) and fine (top) stages. This allow to remove maximum
number of unwanted samples at X1.
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have zero values. The image reconstructed at the fine stage attained a resolution higher
than the exploited bandwidth as there were frequency gaps.
The imaging results for in-situ data (Yak-42) are presented in Fig. 5.6, utilizing grids
of sizes 64×64, 128×128, and 256×256. Fig. 5.6(a) shows the reconstructed images
obtained using the 2D FFT method without any motion compensation; however, it
requires full cardinality. Fig. 5.6(b) shows images reconstructed via CS-ISAR, employing
an SM of discrete Doppler sequences, albeit with high computational demands for the
full grid. To address this, we applied the proposed CTF technique, leading to image
reconstruction using the LS and OMP methods, as shown in Fig. 5.6(c-d). For the LS
approach in the fine stage, as a result of applying the mask, we utilized 4340 (despite
65536) cardinalities from the image vector, whereas the OMP greedy approach employed
2048 cardinalities to achieve high-resolution image reconstruction. We assessed the
efficiency of the OMP greedy algorithm in handling image reconstruction at each scale.
In conclusion, a multi-scale CTF estimation method is proposed that propagates a mask
that restricts the target support across scales, which allows for the restriction of the
initial target domain when estimating the ISAR image and the output mask at the next
scale. This technique reduces the memory overhead for real-time use in cases where the
data samples are limited. This advancement towards low computational costs and lower
memory requirements brings us closer to practical applications.

Figure. 5.6 Imaging results for “Yak-42” aircraft. (a) Image focusing using conventional
2D FFT from coarse-to-fine level (b) CS-ISAR imaging using a dictionary of discrete
Doppler sequences (c) CTF CS-ISAR imaging using the least squares (LS) method; (d)
CTF CS-ISAR imaging using OMP for reconstruction.

24



Chapter 6

Conclusion

6.1 Conclusion

This thesis thoroughly addresses several aspects of signal processing and spectral analysis
of SAR and ISAR data for, imaging, target detection and physical parameter estimation.
These include a comparison of three SoA fDC approaches, the proposed stripmap-like
processing flow for TOPS SAR, and the extension of the TOPS workflow to incorporate
a Deep learning model for preserving Doppler parameters in CV networks. The primary
motivation behind developing or modifying these algorithms was to achieve feature and
image retrieval with minimal computational costs. One significant advancement is made
in Doppler estimation through parallel computing, which not only addresses memory
constraints but also proves beneficial for practical and on-board applications. In the realm
of ISAR imaging, computation can be expensive due to integrals. To tackle this, imaging
through 2D interpolation is proven helpful. This approach proved especially useful for
larger grids or target scene imaging, as it greatly reduced the computational cost. This
breakthrough opens up possibilities for adapting the technology at security checkpoints
for concealed object detection. Lastly, a coarse-to-fine estimation is proposed for Sparse
Aperture High-Resolution Imaging. This approach efficiently considers both memory
limitations and imaging resolution, leading to significant advancements in this field.

6.2 Future Work

Future lines of research consist of optimizing the solutions developed for the SAR and
ISAR setups. With regard to the SAR, possible future work in this area is the testing
of the proposed technique with datasets from two different SAR sensors to incorporate
along-track interferometry (ATI) for OSC estimation directly observed by the movement
of two sensors. Moreover, coastline delineation will be performed by exploiting the data
from the two or three SAR sensors to further enhance the applicability of the proposed
fDC algorithm to work with all types of SAR data.



Analytical techniques aid in feature extraction and target detection using SAR and
ISAR; however, feature classification is equally important. Therefore, deep learning
networks are advancing to enhance feature classification from SAR or ISAR data,
which will be a privilege to adapt these networks for feature classification accuracy.
Building upon the research presented in the context of ISAR, a potential subsequent
phase will involve conducting measurements using a bistatic configuration for ISAR.
This setup offers a beneficial approach for investigating characteristics of the target, as it
enables the acquisition of supplementary data regarding its elevation. The attainment
of such topographical insights would demand the development and integration of novel
algorithms tailored for bistatic imaging.
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