

POLITEHNICA UNIVERSITY
OF BUCHAREST

Doctoral School of Electronics, Telecommunications
and Information Technology

Decizion No. 973 from 08-12-2022

Ph.D. THESIS
SUMMARY

Ing. Teodor-Pantelimon Tivig

CONTROL PLAN OPTIMIZATION IN
SOFTWARE DEFINED NETWORKS

THESIS COMMITTEE

Prof. Dr. Ing. Bogdan IONESCU
Univ. Politehnica din Bucureşti President

Prof. Dr. Ing. Eugen BORCOCI
Univ. Politehnica din Bucureşti PhD Supervisor

Prof. Dr. Ing. Virgil DOBROTĂ
Univ. Politehnica din Cluj-Napoca Referee

Prof. Dr. Ing. Sorin ZOICAN
Univ. Politehnica din Bucureşti Referee

Dr. Ing. Cristian-Iulian RÎNCU
Academia Tehnică Militară din Bucurști Referee

BUCHAREST 2023

Contents
Chapter 1.. 4

Introduction ... 4

1.1 Presentation of the field of the doctoral thesis... 5

1.2 The purpose of the doctoral thesis .. 5

1.3 The content of the doctoral thesis ... 6

Chapter 2.. 7

Current state of the SDN field and open issues ... 7

2.1 Problems encountered with classic IP networks ... 7

2.2 Software-defined networks ... 8

2.2.1. Ryu controller ... 9

2.3 A critical analysis of the multi-controller placement problem in wide area SDN
networks .. 10

2.3.1 Limitation of a single control solution ... 10

2.3.2 Analysis and discussion of dynamic and static SDN controller placement
aspects ... 11

2.3.2 Critical analysis of open issues regarding CPP .. 11

Chapter 3.. 12

Quality of Service in Software Defined Networks ... 12

3.1 The relationship between SDN and QoS .. 13

3.2 Performance evaluation experiments for video and VoIP traffic with RYU
controller and Mininet framework ... 14

4.1. Prototyping the Packet Forwarding Application ... 15

4.1.2 Event Manager for newly registered switches .. 15

4.1.3 Adding flow entries to the switch ... 16

4.1.4 Construction of the flow change message ... 16

4.1.5 Parsing the packet and verifying the integrity of the message 16

Chapter 5.. 18

Control Plane Optimization in SDN Technology .. 18

5.1 SDN multicontroller placement problem ... 18

5.2. The problem of placing multiple controllers in wide area SDN networks 19

5.3 Contributions to the creation of a scalable control plane in SDN technology 20

5.3.1 Proposed solution and results .. 20

Chapter 6 .. 23

Conclusions .. 23

6.1 Results achieved ... 24

6.2 Summary of original contributions .. 24

6.3. Personal publications .. 25

6.3.1 List of Articles Published/Accepted for publication .. 25

6.3.4 List of Projects ... 27

6.4 Future Objectives ... 28

Bibliography ... 28

Chapter 1

Introduction

In recent years, in the context of the development of large telecommunications
networks, the concept of Software Defined Networks (SDN) has been introduced,
which brings to the fore the networks formed by the control plane (SDN controller)
and data traffic transmission nodes.

„SDN is seen as a new paradigm, which attempts to build an elastic, adaptable and
programmable network model by decoupling the control plane from the data plane."
This model, with the help of SDN programming, enables innovation in an agile way
that has not been known before. Last but not least, the network paradigm, which
promises to remove the specifics of a network equipment manufacturer, but also the
specific requirements of a network administrator, by transforming network switching
devices into simple packet forwarding devices that can be programmed through -an
interface, placing at the same time the control plane of each network device in a
logical centralized module [1].

SDN is based on logically centralized network control. This centralization, due to
SDN, brings some challenges related to distributed control in traditional TCP/IP
networks.

In computer networking technology, one of the strongest movements is the trend
towards creating user-developed applications, as users are no longer viewed as
passive consumers, but can be a vector of application development. Users can be
represented by specific company departments or even companies in a shared
environment and want to customize their applications and services. In this context,
applications refer to network services and functions: traffic balancing to optimize
network resources, routing, and even security. To be able to implement these
applications, networks must change, become flexible, adaptable to user requirements,
by applying requirements as services. This movement has induced the
conceptualization and adoption of new network models such as Software Defined
Networks [2], [3] and Network Function Virtualization [4], [5].

“The concept of Network Function Virtualization (NFV) is both a concept and a
powerful technology that is constantly evolving. At the concept level, NFV proposes
to disaggregate software from the hardware it runs on, by realizing in software as
many network functions as possible, which have traditionally been built with
hardware and software specifically designed to work in tandem.

The current evolution and trend is focused on a more intensive use and in a
close connection of SDN and NFV technologies.

A solution for the efficiency of large networks is represented by the
development of multicontroller networks, with a well-defined geography. The
advantages of the multi-controller network are from the point of view of traffic, both
through the possibility of dividing it between controllers, and through the taking over
of the traffic of a controller by the other controllers when needed, the latter
representing the redundancy of controllers in SDN networks. One of the major
disadvantages of these networks is given by the latency involved in the
communication between controllers and nodes, when inter-controller communication
is carried out. Latency also occurs in inter-controller communication. The intensively
studied solution to minimize the disadvantages of SDN networks is given by the
optimal placement of controllers with an overview of the network.

1.1 Presentation of the field of the doctoral thesis

The main area of this thesis is the focus on SDN technology and the study as well as
personal contributions to a problem that is still open: the synchronization of the state
of the network with several controllers in case of failure of the master controller.

Based on the development software framework of the Ryu controller and the
Mininet network emulator, the scope of the thesis mainly focuses on control plane
optimization, in SDN software-defined networks. Based on the text, which identifies
the challenges, the thesis creates experiments and personal contributions for concepts,
software configurations, and integrates distributed databases, for network state
consistency.In addition to those presented, 5G networks, NFV and software tools are
also introduced in the study.

1.2 The purpose of the doctoral thesis

The starting point of this thesis was my professional experience corroborated with the
interest in analyzed trends that loomed on the horizon in SDN, virtualization, NFV
and cloud computing.

Moreover, the scientific research opportunity to contribute to a technology, which
introduces automation in the field of networking, the field in which I work
professionally, to solve one of the current challenges, which is to manually configure
the multitude of existing equipment in a provider network of services and eliminating
certain tasks, which are performed manually, both subject to errors from the human
factor gave me the chance to know, work and contribute to the optimization of the
control plane in software-defined networks through SDN.

.

1.3 The content of the doctoral thesis

This thesis is organized as follows:
Chapter 2 "Current State of the Field and Open Issues"presents the current

status of classical IP networks, the challenges and limitations of this decentralized
architecture, as well as the field of software-defined networks, but also its own
contribution to the identification of open problems in SDN.

Chapter 3 "Quality of Service in Software Defined Networks"presents the
specific QoS characteristics of software-defined networks and various researches that
have dealt with the subject of QoS in SDN architecture, but also experiments
involving the parameters used to evaluate the quality of service.

Chapter 4 "Application Implementations for SDN Controllers"focuses on the
presentation of the components of the Ryu framework and the detailed explanation of
the specific events, with the help of which it is possible to create management and
control applications, but also your own contribution to the development of a traffic
routing application.

Chapter 5 "Control plane optimization in SDN technology"focuses on the
presentation and testing of an own mechanism, which creates a scalable and fault-
tolerant control plan, being a possible solution to the problem of the presence of a
single controller in the software-defined network.

Chapter 6 "Conclusions"- summarizes the main lessons learned along the way
doctoral activity.

Chapter 2
Current state of the SDN field and
open issues

This chapter presents the challenges encountered in classic IP networks. Also this
chapter is dedicated to understanding the architecture of Software Defined Networks
(SDN) together with a critical analysis of the placement of multi-controllers in SDN
technology used in networks dispersed over large geographical areas. This analysis
was used as a starting point for the architecture proposed in Chapter 5.
 This critical approach is gonefrom our observation that there are relatively few
requests that deal with the problem of SDN controller placement (CPP) with an
emphasis on a single performance criterion but also the absence of mechanisms for
open source SDN controllers to re-elect a new master controller in the scenario when
the master controller current fails.

2.1 Problems encountered with classic IP networks

Traditional networks use a large amount of human resources (network operators) and
equipment (routers, switches and intermediate equipment). This is why traditional
networks present these challenges, while network operators have to configure the
protocols, use high-level policies to configure; by using configuration commands it
responds to different types of network events, constantly adapting to changing
conditions [6].

Traditional networks are vertically integrated, which means that the control plane
(the decision maker of network traffic) and the data plane (the sender of network
traffic as decided by the control plane) are tightly integrated within the network. As
seen in Figure 2.1 [7], networks consist of tree planes: data plane, control plane and
management planes. The data plane corresponds to the network devices used to
transmit packets, the control plane corresponds to the protocols that elaborate the
forwarding tables, the management plane includes both software services [8], as well
as network policies. Software services are used to oversee the control plan, and
network policies defined in the management plan are used to transmit data according
to the control plan [9].

The last two planes mentioned are located on the network devices. Their
incorporation on the same devices and the close connection between them imposes
limited flexibility on traditional IP networks, as these two planes are vertically
integrated, resulting in a decentralized architecture. These features were important to
the design of the Internet; also important in building networks was their resilience and
performance, for line rate and port density [10].

Traditional networks can often contain misconfigurations and associated errors
(more than 1000 BGP routers) [11], a single misconfigured device producing packet
loss, forwarding loops, unintended forwarding paths, and contract violations [7].

Traditional IP networks are highly decentralized, with tightly coupled control and

data planes, features that were important to the design of the Internet. Also important
in building the network was network resilience and performance to rapidly increase
line rate and port densities [7].

Figura 2. 1. Layered view of network functionality in planes [7], [Copyright © 2015,
IEEE]

2.2 Software-defined networks

The term SDN represents a recent paradigm in computer networking. It became better
known with the appearance of the OpenFlow protocol in 2008 [10] [12]. The

separation of control and data planes of network equipment has been around since the
1980s [10], [13]. Early attempts at programmed networks have been around since the
1997s [10], [14].

Software-defined networking (SDN) features an architecture where the data plane
and the control plane are separated or decoupled. The SDN architecture comprises
three main elements or layers, which are: the application layer, the control layer and
the forwarding layer, as shown in Figure [7].

Figura 2. 2. Vedere simplificată asupra arhitecturii definite software [7], [Copyright
© 2015, IEEE]

A software-defined network architecture has four attributes [7]:
• Control and data planes are decoupled. Network devices represent only the

switching elements, without further incorporating control decisions.
• Redirection decisions are based on flows. A stream is a set of packet value fields,

composed of a match criterion and a set of instructions. In software-defined
networking, a flow is defined as a set of packets between a source and a
destination with the same service policies [15], [16].

• Logical control is referred to as SDN controller or Network Operating System
(NOS). An NOS is software that runs on a server and schedules the switching
devices based on centralized logic and an abstract view of the network.

• Network programmability is a primary feature of SDN, provided by management
plane software applications.

2.2.1. Ryu controller

The chosen controller for this thesis is Ryu. In the SDN architecture, Ryu is described
as component-based and open source software. The Python programming language is

used to implement Ryu, providing its software tools, which contain explicit APIs, for
free.

The Ryu controller architecture is shown in Figure 2.6 [17].

Figura 2. 3. Ryu controller architecture [17]

2.3 A critical analysis of the multi-controller
placement problem in wide area SDN networks

In this section we compare the complexity of different CPP approaches, through
critical analysis, using two broad criteria, i.e. static and elastic controller-to-switch
mapping, aiming to highlight potential research gaps. SDN specific evaluation criteria
will be: capacity, scalability and load balance. Many CPP research studies have
considered a static mapping between switches and controllers. However, in real
networks, the traffic load is dynamic with high bandwidth requirements; therefore,
some studies have recently concluded that static mapping is not the best approach to
meet the Service Level Agreements (SLAs) that govern many network services.

2.3.1 Limitation of a single control solution

„Early SDN architectures used a single controller to control the entire infrastructure.
Meanwhile, the researchers concluded that a single controller cannot handle the high
data throughput demand from the switches due to the limited capacity of the
controller [18]. Also, a single controller is a single point of failure; the consequence is
that without a controller, forwarding devices cannot learn how to treat newly arrived

packets. To alleviate these problems, a modern architectural design using a multi-
controller scheme was proposed. In the new scheme [7] there are most concepts of
master, slave and peer controller; any switch can connect to a single master and
multiple peer or slave controllers. A peer controller is one that has full access to the
switches and is a peer controller with another controller having the same role.”

2.3.2 Analysis and discussion of dynamic and static SDN controller
placement aspects

Controller placement has two strategic aspects: dynamic and static. In general, many
works propose methods that have a known number of controllers and then optimally
solve the CPP.

Especially in static and medium-sized networks, the optimal location of the
controller is made accordingly, taking into account two parameters: the type of
topology and the capacity of the controller, [19]. In this section, we try to perform a
critical analysis of the CPP problem when the network conditions change.

2.3.2.1 Static approach to SDN controller placement

„Many studies have tried to optimize the flow processing time on the controller's
network interfaces, thereby improving the response time of the controllers, while
other researchers [20] they also used the message buffering model, but imposed that
the number of streams processed by the controller would not exceed the controller's
capacity.

Conversely, other studies have found that partitioning the network into
subdomains will increase the number of controllers and halve the flow configuration.
It is our view that any approach to improving setup time is valuable for CPP, which
we will discuss in the rest of the section”.

2.3.2 Critical analysis of open issues regarding CPP

„To date, the issue of migration selection for a switch or controller has not been fully
addressed in any of the cited papers; there is still no clear approach to choosing a
target switch or controller. If there are multiple underutilized controllers, there is no
clear mechanism that should be selected. There are a few studies that consider the cost
effectiveness of migration for a switch cluster. This lack of information should be
expanded upon in future research. The development of a traffic behavior prediction
method in order to estimate the future state in which the traffic is unpredictable is still

an open research problem. This is important for making the switch migration
decision.”

Chapter 3

Quality of Service in Software
Defined Networks

With the rapid development of SDN, academic and industry researchers have been
trying to achieve QoS provisioning, for more network applications nowadays. Various
studies, which have addressed the subject of QOS, have described one or more of the
categories, in which QoS can be placed as a benefactor of SDN architectures. These
categoriescan be transformed into a simple scheme (Figure 3.1 [21]), each of the 7
elements, reflects a challenge for QoS in SDN that has been studied in various
researches, to bring a solution to one of the 7 particular problems, in providing QoS:

Figura 3. 1. Organization of studies based on quality of service in SDN/OpenFlow
networks, modified by [21]

3.1 The relationship between SDN and QoS

The key purpose of QoS is to ensure traffic classification, which results from the use
of QoS parameters [21]:
• bandwidth;
• delay;
• jitter;
• packet loss.

The relationship between SDN mechanisms and QoS delivery is listed below [21]:

• separation of the data plane and the control plane for networks, which improves
the network controller, from a network control perspective;

• network applications are not forced to deal with low-level configurations of
devices in the data plane and are provided with an abstract view of the network by
controllers;

• controllers can get the global view of the network and its states
• SLA-urile and control policies can be specified by an administrator at a higher

level of abstraction without the need for configuration on each forwarding device.
• the policy set and also the different flow classes are unrestricted allowing fine-

tuning based on user needs;
• therefore, rules can be defined per flow (if needed) and the controller is tasked

with applying them, appropriately to different network elements.
Table 3.1 [21] presents the advantages of SDN in correlation with the 7
categories of QoS provisioning.

Table 3.1. The main features of SDN, which are used in the surveyed papers and
their relationship with the 7 categories of QoS provisioning, modified after [21]

3.2 Performance evaluation experiments for video
and VoIP traffic with RYU controller and Mininet
framework

This section presents personal SDN experiments, the purpose of which is to create
different scenarios to perform performance tests, at the node level. The tests use
the following evaluation criteria: bandwidth, delay and bandwidth for data traffic
and VoIP. The experiments use the Iperf software tool, the Mininet network
emulator, and the Ryu SDN controller.
 Traffic statistics are useful for obtaining information about network
congestion in order to later send it to the controller to decide how to solve itthe
bandwidth requirement for concurrent streams from subscribers connected to the
network.

.

Chapter 4

Application Implementations for
SDN Controllers

This section continues the work of Chapter 3 with a section on prototyping a
control application for the Ryu controller. The current section implements, analyzes,
explains, and tests the logic of a switch that performs packet forwarding using OSI
stack layer 3 criteria.

These software components feature APIs that make it possible to create
control applications in a customized manner, instructing the Ryu controller how the
user wishes to use the equipment.

The applications for the Ryu controller are Python scripts, and the controller

will configure the network equipment using the Open Flow protocol or another
protocol on the south interface.

4.1. Prototyping the Packet Forwarding Application

The proposed application will implement functionalities such as transferring packets
from one network interface to another interface to the destination address, storing
them in the buffer memory of the equipment and performing other actions specific to
the packets. The code is based for the proposed application is in the application
simple_switch.py [18], which we will build to create the functionalities of the
proposed application.

„At this stage, the application will initialize the data that will be used
throughout the entire infrastructure. To implement the key feature of equipment
intelligence, the ryu.base.app_ .manager will be used, which inherits the features of
the OSI Layer 2 switch”.

clasa Layer3forwarding(app_manager.RyuApp):
 OFP_VERSIONS = [ofproto_v1_5.OFP_VERSION]
 def __init__(self, *args, **kwargs):
 super(Layer3forwarding).__init__(*args,**kwargs)

 self.mac_to_port = {}

4.1.2 Event Manager for newly registered switches

The event manager specifies the actions to be taken for a particular event, such as
receiving a packet. The next two lines instantiate the actions to be executed. The
set_ev_cls decorator is used to specify the event class. Every time the switch
generates an event, which reaches the controller, it must respond with an appropriate
message. The structure ofp_event.EventOFPSwitch Features + Message_name
represents the event class name argument or dispatcher for the event manager.

@set_ev_cls(ofp_event.EventOFPSwitchFeatures,CONFIG_DISPATCHER)
 defswitch_features_handler(self, ev):

Information received by the switch shall be decoded using the following code data

structure:

datapath = ev.msg.datapath

ofproto = calea datelor.ofproto
parser = datapath.ofproto_parser
potrivire = parser.OFPMatch()
actiuni=[parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,dep
roto.OFPCML_ NO_BUFFER)]
self.add_flow(datapath, 0, match, actions)

4.1.3 Adding flow entries to the switch

The add_flow function adds a match condition, instructions, and also the effective
time and input priority level for the target packet to each new flow entry. This
function is invoked each time in response to a specific message.

def add_flow(self, datapath, priority, match, actions, buffer_id=None):
ofproto = calea datelor.ofproto
parser =datapath.ofproto_parser
inst=[parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]

4.1.4 Construction of the flow change message

Flow Mods (FlowMods) messages instruct datapaths to add, delete, or modify a flow
in its flow table.

if buffer_id:
 mod=parser.OFPFlowMod(datapath=datapath,buffer_id=buffer_id,

 prioritate=prioritate,potrivire=potrivire,
 instrucțiuni=inst)
 else:
 mod=parser.OFPFlowMod(datapath
 =datapath,priority=priority,match
 =potrivire, instrucțiuni=inst)

datapath.send_msg(mod)

4.1.5 Parsing the packet and verifying the integrity of the message

 The Ryu controller has its own built-in packet handling library that contains the rules
for handling Packet-In notification messages.

@set_ev_cls(ofp_event.EventOFPPacketIn,MAIN_EXPEDITOR)
 def _packet_in_handler(self, ev):
if ev.msg.msg_len < ev.msg.total_len:
 self.logger.debug("packet truncated:only %s of %s bytes",

v.msg.msg _len)
msg = ev.msg
datapath = msg.datapat
ofproto = calea datelor.ofproto
parser = datapath.ofproto_parser
in_port = msg.match['in_port']
msg = ev.msg
datapath = msg.datapat
ofproto = calea datelor.ofproto
parser = datapath.ofproto_parser
in_port = msg.match['in_port']
pkt =packet.Packet(msg.data)
 eth =pkt.get_protocols(ethernet.ethernet)[0]
if eth.ethertype == ether_types.ETH_TYPE_
 LLDP:
 return
dst = eth.dst
src = eth.src
dpid = datapath.id
self.mac_to_port.setdefault(dpid, {})

Metadatele necesare pentru pachet sunt înregistrate în scopul depanării.

self.mac_to_port[dpid][src] = in_port
if dst în self.mac_to_port[dpid]:
 out_port = self.mac_to_port[dpid][dst
 else:
 out_port = ofproto.OFPP_FLOOD
actions = [parser.OFPActionOutput(out_port)]”
if out_port != ofproto.OFPP_FLOOD:
 dacă L3.ethertype==ether_types.ETH_TYPE_IP:ip
 =pkt.
 obține _ protocol(ip4.ipv4)
 srsip=ip.src
 dstip=ip.dst
 potrivire=parser.OFMatch(eth_type=ether_

Chapter 5

Control Plane Optimization in
SDN Technology
This chapter presents the main scientific contributions to the creation of a scalable
fault-tolerant control plan that represents a potential solution to the problem of a
single controller representing a single point of failure in software-defined networks.
The mechanism to create a scalable control plane uses Redis and Zookeeper. Software
simulations are done with the Ryu controller and the Mininet emulator.

The general objectives of this chapter are:

- Introducing the SDN multi-controller placement problem and its intermediate
problems:

o the number of SDN controllers for optimal network operation.
o and where to place the controllers on the network

- Proposing a scientific scenario as well as a practical solution to ensure a
scalable control plane in SDN technology.

- The functional components and tools used are as follows:

- Python, Ryu, Mininet, Zookeeper and Redis.

5.1 SDN multicontroller placement problem

To solve the problem of placing multiple controllers in SDN technology, several
metrics need to be improved, such as the latency between the controller and the
forwarding elements and between the controllers, but also the resilience and
reliability. Also, considering the latency for real network architectures, the optimal
choice in fail-safe scenarios is to evaluate the global solution space with offline
computations.

The control plane architecture of software-defined networks has been designed
with a single controller or with multiple controllers, these being classified in turn into
either centralized physical or logical architectures or distributed physical or logical
architectures as shown in Figure 5.1.

In a multi-controller architecture, the controllers work simultaneously to achieve
reasonable performance and scalability. A multi-controller SDN architecture can take
many forms and aspects, with network segments divided into centralized or
distributed logical or physical architectures and flat and hierarchical segment
architectures.

 Figura 5. 1. Classification of SDN control plane architectures SDN [22], [Copyright ©
2018, IEEE]

5.2 The problem of placing multiple controllers in de
area SDN networks

This section is intended to introduce a number of constraints as well as objectives for
deploying multicontrollers in wide area SDN networks as well as challenges that may
arise in implementing them to achieve the objectives. Also, in large-area SDN
networks, it is necessary to use algorithms to solve the multi-objective large-area
SDN controller placement problem [23].

Constraints used when placing controllers include:
• controller capabilities;
• switch loads.

Applicable goals for large-scale SDN networks [23],
• latency between switches and controllers;
• inter-controller latency;
• load balancing;
• node, controller and link failures

5.3 Contributions to the creation of a scalable control
plane in SDN technology

In this section, a mechanism for creating a control plane in SDN architecture is
presented.

The main idea of this thesis is that it tries to create and present a live test of a
robust mechanism that represents a potential solution to the problem of having a
single point of failure in the SDN architecture.

The mechanism by which the SDN controllers managing the network have a
symmetric topological basis in the scenario when the main controller fails is realized
with Redis and Zookeeper. The mechanism allows multiple Ryu controllers to
continue to perform their functions over the network in a manner tolerant of network
events that can take the master controller out of service, through a centralized service
called Redis that maintains network state information and Zookeeper is used to
choosing the master controller.

5.3.1 Proposed solution and results

In this section, a fault-tolerant mechanism is presented to reduce the single point of
failure in the SDN network, and consequently, the proposed solution will create a
high degree of service availability and increase reliability and scalability.

From a high-level perspective this architecture consists of the following
components:

• Ryu Controllers;

• Redis database for distributing topological information for the Ryu controller;

• Zookeeper used for fault detection and choice of master or slave controller;

• Mininet for constructing the topology;

• The Python language used to define the topology and the interaction of the
components shown above.

The proposed solution consists of three individual Ryu controllers running in three
terminals, each controller using different port numbers. So controller number 1 listens
on port 6633, controller number 2 listens on port 6634 and controller number 3 listens
on port 6635. The controllers will be used in each of the three roles of peer, master or
slave. In the fourth terminal, a basic linear topology with two switches will run and
each individual switch will be connected to the three controllers as shown in Figure
5.2 by running the command: sudo mn --controller=remote, ip=127.0.0.1:6633 - -
controller=remote, ip=127.0.0.1:6634 controller=remote, ip=127.0.0.1:6635

In the controller simulation in Equal mode

The switches are connected as can be seen in Figure 5.2 and all controllers will have
equal roles. This means that all controllers will receive a duplicate notification with
the PACKET_IN message for each new packet that a switch receives. Having all
controllers with the same role, the consequence being that the number of packets will
multiply by the number of controllers present in the topology. The advantage is that
control plane redundancy is achieved in case of failure of any controller and the
resulting packet loss is zero. The disadvantage of this configuration is limited
scalability, every controller receives the same PACKET_IN message, the same
payload. The graph in Figure 5.3 shows the number of transmitted packets, received
packets, and duplicate packets when the controllers are running in the equal role."

Figura 5. 2. Evaluating the type of connectivity of the switches with all three controllers [24]

Figura 5. 3. Statistics for transmitted, received and duplicate packets [24]

Master and Slave role simulation

The master and slave configuration scenario will have the first controller running as
the master and the remaining two controllers running as slaves. The two controllers
working in the "SLAVE" role do not receive the PACET_IN message, only the
number one controller which is the master, receives the PACKET_IN notification
from all switches. After the functionality of the control plane represented by the first
controller is verified, the test continues by stopping the main controller using the
CTRL+C command in its terminal, which triggers the re-election of the master and
slave controller. Any remaining controller can be chosen as the master.

The second controller becomes the master (according to a random criterion, which
can be changed by the user), it receives all the topological information from the Redis
database, receiving the PACKET_IN notification because it has the role of master,
and the number three controller receives the role of SLAVE. Initiating a ping test
using the pingall command from the first host in the topology evaluates the
functionality of the control plane after reselection.

In the next step, the number one controller that was previously stopped is started
by issuing the command: ryu-manager --ofp-tcp-listen-port 6633 master_slave.py and
takes the role of slave, due to the fact that the master controller was previously
chosen.

After that, we're going to shut down the master controller, controller number 2,
and either controller becomes the master controller. The functionality of the controller
that obtains the role of master (controller number 3) is tested, after which the
controller number two that takes over the role of slave is restarted. In the last step,
controller number 3 is turned off, thus triggering the re-election process of the master
controller.

Thus, through successive steps of starting and stopping one of the three controllers
with the master role, the controller that takes over the master role after the failure
(stopping) of the current master controller, it is tested if the proposed mechanism that
integrates the Redis database, provides the topological information in a optimal time
to the new master-elected controller at each simulated failure of the master-role
controller.

Chapter 6

Conclusions
SDN technology brings advantages but also major challenges such as: networks

that have a single controller that can impact the network becoming unusable; but also
at the level of networks dispersed over large geographical areas that require the
presence of multi-controllers by: interconnecting these to create a fault-resistant
control plan by providing the network status of the controller that takes control in case
of failure of the master controller, but also very important is the location of these
controls to satisfy specific parameters with a strong impact on the quality of services
but also on scalability.

This thesis proposes a review of the works present in the specialized literature in
order to identify guidelines regarding contributions to the optimization of the control
plane both to identify an optimal solution for the placement of multi-controllers but
also to achieve communication at the level of the data plane for the transfer of the

network state in scenario as the controller managing the network fails, but has not
identified a complete solution.

6.1 Results achieved

Chapter 1 presents the thesis, its motivation and structure. The thesis area focuses
very strongly on the control plane of SDN technology, developing personal
experiments for quality of service (QoS), making applications for the Ryu controller
using the Python programming language.

The software frameworks used are Ryu and Mininet.
Chapter 2 focuses on the state of the SDN field and the open issues, challenges

and status of classic networks. It presents its own contributions regarding the
identification of challenges and open issues belonging to SDN technology, but also
the highlighting of critical aspects, which were presented at the ICCNE 2015
conference.

Chapter 3 is completely dedicated to presenting the quality of services of the SDN
architecture at a high level and the experiments performed.

Chapter 4 results are based on the Ryu controller software framework and
specialized software events used to create applications. There is an example of an
application based on traffic routing where the code used is contribution.

Chapter 5 is entirely the author's work from theoretical and practical perspectives.
The main focus is on the control plan of software-defined networks and the main
challenges that can impact the scalability and availability of control but also the
quality of service. Due to these challenges, an own mechanism and scenario was
proposed for a scalable control plane that also avoids the problem of the presence of a
single controller in the SDN topology.

Chapter 6 is devoted to conclusions and perspectives.

6.2 Summary of original contributions

Below is a brief description of the personal contributions presented in this thesis.
1. Collecting different points of view and trying to identify and highlight critical

issues related to 5G technology.
Contributions can be identified in: Chapter 2.6, Annex A.3, Publications [1-
ICCNE].

2. Critical analysis of the multi-controller placement problem in wide area SDN
networks.
Contributions can be identified in: Chapter 2.7 Publications [2-COMMS].

3. Performance evaluation experiments for voice and video traffic with Ryu
controller and Mininet framework.

 Contributions can be identified in: Chapter 3.8 Publications [3-Scientific
Bulletin]

4. Analyzes, explains the components of the Ryu framework, as well as software-
created events for use in creating management and control applications. Proposes
a trick for driving traffic with explanations and steps needed to do it.
Contributions can be identified in: Chapter 4.12 Publications [4-ISNCC].

5. Another experiment proposes a scenario for creating a scalable, fault-tolerant
control plane that tries to solve the problem of having a single SDN controller for
open software architecture controllers.
Contributions can be identified in: Chapter 5.3 Publications [4-ISNCC].

6.3. Personal publications

6.3.1 List of Articles Published/Accepted for publication

1. "Pantelimon-Teodor Tivig, Silviu-Andrei Lazar,5G Mobile Technology between
Requirements and Real Life Deployment, The 2nd International Conference on
Communication and Network Engineering, 2015".
Published in: International Journal of Future Computer and Communication

(IJFCC).
Abstracting/Indexingby Google Scholar, Engineering & Technology Digital
Library, and Crossref, DOAJ, Electronic Journals Library, EI (INSPEC, IET).
Conference location: Amsterdam, Netherlands.
Conference date: December 10-11.

2. "Pantelimon-Teodor Tivig, Borcoci Eugen, Software Defined Networking Using
Mininet for Agile Testing Network Scenarios, The 12th International Conference
on Computer Science and Information Technology (ICCSIT 2019), 2019"
Published in: Journal of Communications (JCM, ISSN: 1796-2021Online; 2374-
4367 Print). Abstracting/Indexing: SCOPE; DBLP; ULRICH's Periodicals
Directory; And so on
Conference Location: Barcelona, Spain.
Conference date: December 18-20.

3. Pantelimon-Teodor Tivig, Borcoci Eugen, Critical Analysis of Multi-Controller
Placement Problem in Large SDN Networks, 13th International Conference on
Communications (COMM), 2020.
Published and Indexed: IEEE Xplore, ConfAbstracting/Indexing:ISI database.
Conference location: Bucharest, Romania.
Conference date: June 18-20.
DOI: 10.1109/COMM48946.2020.9141969

4. Pantelimon-Teodor Tivig, Borcoci Eugen, Alexandru Brumaru, Layer 3
Forwarder Application - Implementation Experiments Based on Ryu SDN
Controller, International Symposium on Networks, Computers and
Communications (ISNCC), 2021.
Published in: IEEE Xplore digital library effective 2021-11-25, DBLP and
Thomson Reuters.
Indexed in: IEEE BDI
Conference location: Dubai – United Arab Emirates.
Conference date: October 31 – November 2.
DOI:10.1109/ISNCC52172.2021.9615685

5. Pantelimon-Teodor Tivig, Borcoci Eugen, Alexandru Brumaru, Performance
evaluation experiments for video and voip traffic with Ryu controller and mininet
framework-Part I, Scientific Bulletin – Universitatea Politehnică Bucharest, 2022.
Accepted and published.
Filing number 12260.
Indexed in ISI and SCOPUS.

6. Pantelimon-Teodor Tivig, Borcoci Eugen, Alexandru Brumaru, Performance
Evaluation Use Cases For Video And Voip Traffic Using Ryu Controller And
Mininet Framework – Part II, Scientific Bulletin – Universitatea Politehnică
Bucharest, 2022.
Accepted and published.
Filing number 12261
Indexed in ISI and SCOPUS.

7. Pantelimon-Teodor Tivig, Alexandru Brumaru, Serban Georgica Obreja,
"Creating Scalable Distributed Controlplane In SDN To Rule Out The Single
Point Of failure", The 14th International Conference on Communications, 2022.
Conference location: Bucharest, Romania.
Conference date: June 16-18.
Published and Indexed in: IEEE BDI Conference.
Indexed in ISI.
DOI:10.1109/COMM54429.2022.9817181

https://doi.org/10.1109/COMM48946.2020.9141969
https://doi.org/10.1109/ISNCC52172.2021.9615685
https://doi.org/10.1109/COMM54429.2022.9817181

8. Pantelimon-Teodor Tivig, Eugen Borcoci, "Performance Assessments For SDN
Control Plane Into Distinct Network Topologies", The 30th International
Conference on Software, Telecommunications and Computer Networks.
Published and Indexed in: IEEE Xplore, Scopus, and DBLP.
Conference date: 22 - 22 September 2022 - Split, Croatia.
DOI:10.23919/SoftCOM55329.2022.9911385

9. Pantelimon-Teodor Tivig, Eugen Borcoci, " Dynamically Offloading The SDN
Control Plane In Large Area Networks By Condition Aware Migration Of
Forwarding Devices", 2022 25th International Symposium on Wireless Personal
Multimedia Communications.
Published and Indexed in: IEEE Xplore
Conference date: 30 October - 2 November 2022 - Herning, Denmark.
DOI:10.1002/dac.3101

10. Pantelimon-Teodor Tivig, Eugen Borcoci, Frank Y. Li, Indika Anuradha Mendis
Balapuwaduge, Marius Vochin, "Sicing the 5G Core Network Based on SDN Ryu
Controller for Everything as a Service", in progress.

6.3.4 List of Projects

Knowledge, innovation and development through doctoral scholarships - CID-Doc –
2014-1015

Investment endowment for the laboratories "Ad Net Market Media for research
and development in future mobile communications" - FUTURE-NET-LAB, financed
by the EU within the Operational Program Competitiveness (POC), priority axis 1,
action 1.1.1:. Large infrastructures of Research and Development, November 2019.

A Massive MIMO Enabled IoT Platform with Networking Slicing for Beyond 5G
IoV/V2X and Maritime Services (SOLID-B5G), January 2022.

Increasing the innovative competitiveness of SC Ad Net Market Media SRL
through initial innovation investments in order to achieve a SmartDelta technology
platform, within a newly established unit for the realization of CD activities in
effective collaboration, February 2022.

Collaborator for the management of Master's thesis.

http://dx.doi.org/10.23919/SoftCOM55329.2022.9911385
http://dx.doi.org/10.1002/dac.3101

6.4 Future Objectives

The intention for the future is to make contributions in the area of interest of SDN and
also in the field of NFV, which is strongly integrated with software-defined networks,
but also in tangential technologies Cloud computer and Machine learning.

From an academic perspective, the possibility of entering the teaching staff
hierarchy is taken into account.

Bibliography

[1] Feamster, H. Kim and N., „Improving network management with software defined
networking,” Communications Magazine, IEEE, vol. vol. 51, nr. no. 2, p. pp. 114–119,
2013.

[2] Qiang Duan, Nirwan Ansari, and Mehmet Toy, „Software-defined network virtualization:
An architectural framework for integrating SDN and NFV for service provisioning in
future networks,” IEEE Network, 2016.

[3] N. Omnes, M. Bouillon, G. Fromentoux, and O. le Grand, „A programmable and
virtualized network & IT infrastructure for the internet of things: How can NFV & SDN
help for facing the upcoming challenges,” International Conference on Intelligence in
Next Generation Networks, p. pp. 64–69, Mar. 2015.

[4] ETSI Industry Specification Group (ISG) NFV, 2014b. GS NFV-MAN 001 - V1.1.1: Network
Functions Virtualisation (NFV); URL:, Management and Orchestration. Technical Report.,
„http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf,” [Interactiv].

[5] ETSI Industry Specification Group (ISG) NFV, a. ETSI GS NFV-EVE 005 V1.1.1: Network
Functions Virtualisation (NFV); Ecosystem; URL:, Report on SDN Usage in NFV
Architectural Framework. Technical Report. ETSI.,
„http://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_nfv-
eve005v010101p.pdf.,” [Interactiv].

[6] Bruno Nunes Astuto, Marc Mendonça, Xuan Nam Nguyen, Katia Obraczka, Thierry
Turletti, „A Survey of Software-Defined Networking: Past, Present, and Future of
Programmable Networks,” 2013.

[7] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig,

„Software-Defined Networking: A Comprehensive Survey,” in Proceedings of the IEEE,
vol. vol. 103, nr. no. 1, pp. pp. 14-76, Jan. 2015.

[8] Presuhn, R., „Version 2 of the Protocol Operations for the SimpleNetwork Management
Protocol (SNMP),” RFC 3416 (INTERNET STANDARD), Internet Engineering Task Force,”
Dec. 2002. [Interactiv]. Available: http://www.ietf.org/rfc/rfc3416.txt.

[9] CIARAN EGAN, Dr. Marco Ruffini, „End-to-end Capacity Reservation in Software Defined
Networks,” A dissertation submitted in fulfillment of the requirements for the degree:
Integrated Masters In Computer Science at the School Of Computer Science & Statistics,
The University of Dublin, May 2016.

[10] Balakrishnan, N. Feamster and H., „Detecting BGP configuration faults with static
analysis,” in Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation, ser.NSDI’05. Berkeley, CA, USA: USENIX Association, vol.
Volume 2, p. pp. 43–56, 2005.

[11] McKeown, Nick et al., „OpenFlow: Enabling Innovation in Campus Networks,” In:
SIGCOMM Comput. Commun. Rev. 38.2, pp. 69–74. ISSN: 0146-4833, 2008. [Interactiv].
Available: http://doi.acm.org/10.1145/1355734.1355746.

[12] Sheinbein, D. and R. P. Weber, „800 Service Using SPC Network Capability,” In: The Bell
System Technical Journal 61.7, 1982.

[13] Tennenhouse, D.L. et al., „A survey of active network research,” In: Communications
Magazine, IEEE 35.1, pp. 80–86. ISSN: 0163-6804. DOI: 10.1109/35.568214., 1997.

[14] P. Newman, G. Minshall, and T. L. Lyon, „Ip switching—atm under ip,” IEEE/ACM
Trans. Netw., vol. 6, no. 2, pp. 117–129, Apr.1998.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, „NOX:
towards an operating system for networks,” Comp. Comm. Rev., 2008.

[16] [Interactiv]. Available: https://nsrc.org/workshops/2014/nznog-sdn/raw-
attachment/wiki/WikiStart/Ryu.pdf.

[17] Srivastava, I.S. A. K. Singh and S., „A survey and classification of controller placement
problem in sdn,” International Journal of Network Management, 2018.

[18] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, „Applying nox to the datacenter,” in
HotNets, 2009.

[19] D. Zeng, C. Teng, L. Gu, H. Yao, and Q. Liang, „Flow setup time aware minimum cost
switch-controller association in software-defined networks,” in Heterogeneous
Networking for Quality, Reliability, Security and Robustness (QSHINE), 2015 11th

International Conferenceon. IEEE, pp. 259–264, 2015.

[20] Murat Karakus, Arjan Durresi, „Quality of Service (QoS) in Software Defined Networking
(SDN): A Survey,” J. Netw. Comput. Appl. 80, C, pp. 200–218., February 2017.
[Interactiv]. Available: https://doi.org/10.1016/j.jnca.2016.12.019.

[21] B. Isong, RRS Molose, AM Abu-Mahfouz și N. Dladlu, „Comprehensive Review of SDN
Controller Placement Strategies,” în IEEE Access, vol. 8, p. 170070-170092, 2020.

[22] V. Ahmadi, M. Khorramizadeh, „An adaptive heuristic for multi-objective controller
placement in software-defined networks,” Computers & Electrical Engineering. 66.
10.1016/j.compeleceng.2017.12.043., 2017.

[23] P.-T. Tivig, A. Brumaru, S. G. Obreja, „Creating Scalable Distributed Control Plane In SDN
To Rule Out The Single POINT Of Failure,” COMMS, 2022.

[24] B. Eugen, A. Tudor, M. Vochina , „Multi-criteria based Optimization of Placement for
Software Defined Networking Controllers and Forwarding Nodes,” The Fifteenth
International Conference on Networks ICN 2016, February 2016.

